Weak Dipole Effect Customized Zinc Ion-Rich Protective Layer for Lean-Electrolyte Zinc Metal Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yifan Pan, Doudou Feng, Yanchun Xie, Yucong Jiao, Peiyi Wu
{"title":"Weak Dipole Effect Customized Zinc Ion-Rich Protective Layer for Lean-Electrolyte Zinc Metal Batteries","authors":"Yifan Pan, Doudou Feng, Yanchun Xie, Yucong Jiao, Peiyi Wu","doi":"10.1002/adma.202501004","DOIUrl":null,"url":null,"abstract":"The industrial development of Zn-ion batteries requires high performance even with lean-electrolyte. Nevertheless, lean-electrolyte can exacerbate concentration polarization at the interface of electrode/electrolyte, leading to significant Zn corrosion and battery failure. Here, a stable Zn ion-rich protective layer (TMAO-Zn) is constructed by a unique zwitterion structure of trimethylamine N-oxide (TMAO). The TMAO is characterized by the direct connection between positive and negative charges (N<sup>+</sup>-O<sup>−</sup>) with minimal dipole moment, which renders weak dipole interactions to form the TMAO-Zn layer with Zn<sup>2+</sup>, thereby reducing concentration polarization and promoting the rapid and uniform deposition of Zn<sup>2+</sup>. Furthermore, the O of TMAO-Zn exhibits the higher electrophilic index, indicating a stronger propensity for stable hydrogen bond interactions with active free water in the inner Helmholtz layer (IHL), thereby mitigating corrosion under extreme conditions of low electrolyte-to-capacity ratio (E/C ratio). Consequently, the symmetrical Zn battery with TMAO-Zn enables stable cycling for over 250 h with lean-electrolyte of 15 µL mA h<sup>−1</sup>. Additionally, Zn/I₂ pouch battery with a low E/C ratio of 21.2 µL mA h<sup>−1</sup> provides ultra-high stable specific capacity of 96 mA h for over 250 cycles (capacity retention rate of 98.3%). This study offers a new concept to propel the practical application of Zn batteries with lean-electrolyte.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"14 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202501004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The industrial development of Zn-ion batteries requires high performance even with lean-electrolyte. Nevertheless, lean-electrolyte can exacerbate concentration polarization at the interface of electrode/electrolyte, leading to significant Zn corrosion and battery failure. Here, a stable Zn ion-rich protective layer (TMAO-Zn) is constructed by a unique zwitterion structure of trimethylamine N-oxide (TMAO). The TMAO is characterized by the direct connection between positive and negative charges (N+-O) with minimal dipole moment, which renders weak dipole interactions to form the TMAO-Zn layer with Zn2+, thereby reducing concentration polarization and promoting the rapid and uniform deposition of Zn2+. Furthermore, the O of TMAO-Zn exhibits the higher electrophilic index, indicating a stronger propensity for stable hydrogen bond interactions with active free water in the inner Helmholtz layer (IHL), thereby mitigating corrosion under extreme conditions of low electrolyte-to-capacity ratio (E/C ratio). Consequently, the symmetrical Zn battery with TMAO-Zn enables stable cycling for over 250 h with lean-electrolyte of 15 µL mA h−1. Additionally, Zn/I₂ pouch battery with a low E/C ratio of 21.2 µL mA h−1 provides ultra-high stable specific capacity of 96 mA h for over 250 cycles (capacity retention rate of 98.3%). This study offers a new concept to propel the practical application of Zn batteries with lean-electrolyte.

Abstract Image

弱偶极子效应定制贫电解锌金属电池富锌离子保护层
锌-离子电池的工业发展要求即使在贫电解质条件下也能实现高性能。然而,贫电解质会加剧电极/电解质界面的浓度极化,导致严重的锌腐蚀和电池失效。在这里,我们利用三甲胺 N-氧化物(TMAO)的独特齐聚物结构构建了一个稳定的富锌离子保护层(TMAO-Zn)。TMAO 的特点是正负电荷(N+-O-)直接相连,偶极矩极小,这使得 TMAO-Zn 层与 Zn2+ 之间的偶极相互作用很弱,从而降低了浓度极化,促进了 Zn2+ 的快速均匀沉积。此外,TMAO-Zn 的 O 表现出更高的亲电指数,这表明它更倾向于与内亥姆霍兹层(IHL)中的活性自由水发生稳定的氢键相互作用,从而减轻了低电解质容量比(E/C 比)极端条件下的腐蚀。因此,使用 TMAO-Zn 的对称锌电池可以在 15 µL mA h-1 的贫电解液条件下稳定循环超过 250 小时。此外,Zn/I₂小袋电池的 E/C 比低至 21.2 µL mA h-1,可在超过 250 次循环中提供 96 mA h 的超高稳定比容量(容量保持率为 98.3%)。这项研究提供了一个新概念,可推动贫电解质锌电池的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信