{"title":"Collective Electricity Generation over the Kilovolt Level from Water Droplets","authors":"Wei Deng, Yufeng Zhu, Kelan Zhang, Yuxuan Yuan, Tao Hu, Xiao Wang, Jidong Li, Xuemei Li, Zhuhua Zhang, Wanlin Guo, Jun Yin","doi":"10.1021/acs.nanolett.5c01064","DOIUrl":null,"url":null,"abstract":"Collective behavior enables groups of organisms to achieve feats far exceeding individual capability. Inspired by this, we present a novel droplet-based electricity generator that leverages the collective dynamics of multiple water droplets to significantly enhance electrical output, achieving orders of magnitude improvement compared with single-droplet devices. It is revealed that grouped water droplets, although spatially separated, coordinate via charge exchange with a solid surface and external charge transfer. Consequently, the solid surface charge density is significantly enhanced, elevating the charge transfer. This collective effect readily generates peak voltages exceeding one kilovolt, sufficient for air ionization and nitrogen fixation, with potential applications in nutrient production. We anticipate that this collective strategy will significantly advance the design and applications of droplet-based hydrovoltaic devices.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"130 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01064","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Collective behavior enables groups of organisms to achieve feats far exceeding individual capability. Inspired by this, we present a novel droplet-based electricity generator that leverages the collective dynamics of multiple water droplets to significantly enhance electrical output, achieving orders of magnitude improvement compared with single-droplet devices. It is revealed that grouped water droplets, although spatially separated, coordinate via charge exchange with a solid surface and external charge transfer. Consequently, the solid surface charge density is significantly enhanced, elevating the charge transfer. This collective effect readily generates peak voltages exceeding one kilovolt, sufficient for air ionization and nitrogen fixation, with potential applications in nutrient production. We anticipate that this collective strategy will significantly advance the design and applications of droplet-based hydrovoltaic devices.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.