{"title":"Broadband-Detection and Low-Operating-Voltage Photodetectors Based on Metal Oxide/Perovskite Quantum Dot Heterojunctions","authors":"Dalong Ge, Jiaqi Xu, Tian Tian, Xianglong Wang, Yu Zhang, Feiyang Xu, Baochuan Shao, Qi Chen, Mengyao Wei, Yuanbin Qin, Fengyun Wang","doi":"10.1021/acs.jpclett.5c00734","DOIUrl":null,"url":null,"abstract":"To achieve comprehensive environmental monitoring, photodetectors with broad operational wavelength range are crucial for capturing realistic wide-spectrum signals and supporting integrated system operations. This study presents a high-performance photodetector based on InSrO nanofiber (NF)/CsPbBr<sub>3</sub> quantum dot (QD) heterojunctions, achieving broadband detection (230–500 nm) and ultralow operating voltage (0.05 V). By synergistically combining the UV absorption of InSrO NFs with the visible-light sensitivity of CsPbBr<sub>3</sub> QDs, the device exhibits a responsivity of 6.88 A·W<sup>–1</sup> and a detectivity of 6.39 × 10<sup>14</sup> Jones. Systematic analysis reveals that the heterointerface facilitates efficient charge separation, while the 1D nanofiber architecture enhances directional carrier transport. Notably, the photodetectors can retain 95% of the initial photocurrent after 15 days, demonstrating exceptional stability. This work can advance the development of energy-efficient optoelectronic devices for environmental monitoring and optical communications applications.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00734","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve comprehensive environmental monitoring, photodetectors with broad operational wavelength range are crucial for capturing realistic wide-spectrum signals and supporting integrated system operations. This study presents a high-performance photodetector based on InSrO nanofiber (NF)/CsPbBr3 quantum dot (QD) heterojunctions, achieving broadband detection (230–500 nm) and ultralow operating voltage (0.05 V). By synergistically combining the UV absorption of InSrO NFs with the visible-light sensitivity of CsPbBr3 QDs, the device exhibits a responsivity of 6.88 A·W–1 and a detectivity of 6.39 × 1014 Jones. Systematic analysis reveals that the heterointerface facilitates efficient charge separation, while the 1D nanofiber architecture enhances directional carrier transport. Notably, the photodetectors can retain 95% of the initial photocurrent after 15 days, demonstrating exceptional stability. This work can advance the development of energy-efficient optoelectronic devices for environmental monitoring and optical communications applications.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.