Synergistic Ru Species on Poly(heptazine imide) Enabling Efficient Photocatalytic CO2 reduction with H2O Beyond 800 nm

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bo Su, Sibo Wang, Wandong Xing, Kunlong Liu, Sung-Fu Hung, Xiong Chen, Yuanxing Fang, Guigang Zhang, Huabin Zhang, Xinchen Wang
{"title":"Synergistic Ru Species on Poly(heptazine imide) Enabling Efficient Photocatalytic CO2 reduction with H2O Beyond 800 nm","authors":"Bo Su, Sibo Wang, Wandong Xing, Kunlong Liu, Sung-Fu Hung, Xiong Chen, Yuanxing Fang, Guigang Zhang, Huabin Zhang, Xinchen Wang","doi":"10.1002/anie.202505453","DOIUrl":null,"url":null,"abstract":"Photocatalytic CO2 conversion with H2O to carbonaceous fuels is a desirable strategy for CO2 management and solar utilization, yet its efficiency remains suboptimal. Herein, efficient and durable CO2 photoreduction is realized over a RuNPs/Ru-PHI catalyst assembled by anchoring Ru single atoms (SAs) and nanoparticles (NPs) onto poly(heptazine imide) (PHI) via the in-plane Ru-N4 coordination and interfacial Ru-N bonds, respectively. This catalyst shows an unsurpassed CO production (32.8 μmol h-1), a record-high apparent quantum efficiency (0.26%) beyond 800 nm, and the formation of the valuable H2O2. Ru SAs tune PHI’s electronic structure to promote in-plane charge transfer to Ru NPs, forming a built-in electron field at the interface, which directs electron-hole separation and rushes excited electron movement from Ru-PHI to Ru NPs. Simultaneously, Ru SAs introduce an impurity level in PHI to endow long-wavelength photoabsorption, while Ru NPs strengthen CO2 adsorption/activation and expedite CO desorption. These effects of Ru species together effectively ensure CO2-to-CO conversion. The CO2 reduction on the catalyst is revealed to follow the pathway CO2→ *CO2→ *COOH→ *CO→ CO, based on the intermediates identified by in situ diffuse reflectance infrared Fourier transform spectroscopy and further supported by density functional theory calculations.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"252 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505453","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic CO2 conversion with H2O to carbonaceous fuels is a desirable strategy for CO2 management and solar utilization, yet its efficiency remains suboptimal. Herein, efficient and durable CO2 photoreduction is realized over a RuNPs/Ru-PHI catalyst assembled by anchoring Ru single atoms (SAs) and nanoparticles (NPs) onto poly(heptazine imide) (PHI) via the in-plane Ru-N4 coordination and interfacial Ru-N bonds, respectively. This catalyst shows an unsurpassed CO production (32.8 μmol h-1), a record-high apparent quantum efficiency (0.26%) beyond 800 nm, and the formation of the valuable H2O2. Ru SAs tune PHI’s electronic structure to promote in-plane charge transfer to Ru NPs, forming a built-in electron field at the interface, which directs electron-hole separation and rushes excited electron movement from Ru-PHI to Ru NPs. Simultaneously, Ru SAs introduce an impurity level in PHI to endow long-wavelength photoabsorption, while Ru NPs strengthen CO2 adsorption/activation and expedite CO desorption. These effects of Ru species together effectively ensure CO2-to-CO conversion. The CO2 reduction on the catalyst is revealed to follow the pathway CO2→ *CO2→ *COOH→ *CO→ CO, based on the intermediates identified by in situ diffuse reflectance infrared Fourier transform spectroscopy and further supported by density functional theory calculations.
聚七嗪亚胺上的协同钌实现800 nm以上水的高效光催化CO2还原
光催化二氧化碳与水转化为碳质燃料是二氧化碳管理和太阳能利用的理想策略,但其效率仍然不理想。在本研究中,Ru单原子(SAs)和纳米粒子(NPs)分别通过平面内Ru- n4配位和界面Ru- n键将Ru单原子(SAs)和纳米粒子(NPs)固定在聚己烷酰亚胺(PHI)上,从而实现了高效和持久的CO2光还原。该催化剂的CO产率高达32.8 μmol h-1,在800 nm处的表观量子效率达到了创纪录的0.26%,并生成了有价的H2O2。Ru SAs调整PHI的电子结构,促进面内电荷向Ru NPs转移,在界面处形成内置电子场,引导电子空穴分离,并将受激电子从Ru-PHI向Ru NPs移动。同时,Ru sa在PHI中引入杂质能级,赋予了长波光吸收,而Ru NPs则增强了CO2的吸附/活化,加速了CO的解吸。Ru的这些作用共同有效地保证了CO2-to-CO的转化。基于原位漫反射红外傅立叶变换光谱和密度泛函理论计算,发现催化剂上CO2的还原遵循CO2→*CO2→*COOH→*CO→CO的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信