{"title":"Drosophila model systems reveal intestinal stem cells as key players in aging","authors":"Joung-Sun Park, Mi Jeong Sung, Hyun-Jin Na","doi":"10.1111/nyas.15351","DOIUrl":null,"url":null,"abstract":"The intestines play important roles in responding immediately and dynamically to food intake, environmental stress, and metabolic dysfunction, and they are involved in various human diseases and aging. A key part of their function is governed by intestinal stem cells (ISCs); therefore, understanding ISCs is vital. Dysregulation of ISC activity, which is influenced by various cell signaling pathways and environmental signals, can lead to inflammatory responses, tissue damage, and increased cancer susceptibility. Aging exacerbates these dynamics and affects ISC function and tissue elasticity. Additionally, proliferation and differentiation profoundly affect ISC behavior and gut health, highlighting the complex interplay between environmental factors and gut homeostasis. <i>Drosophila</i> models help us understand the complex regulatory networks in the gut, providing valuable insights into disease mechanisms and therapeutic strategies targeting human intestinal diseases.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"45 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15351","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The intestines play important roles in responding immediately and dynamically to food intake, environmental stress, and metabolic dysfunction, and they are involved in various human diseases and aging. A key part of their function is governed by intestinal stem cells (ISCs); therefore, understanding ISCs is vital. Dysregulation of ISC activity, which is influenced by various cell signaling pathways and environmental signals, can lead to inflammatory responses, tissue damage, and increased cancer susceptibility. Aging exacerbates these dynamics and affects ISC function and tissue elasticity. Additionally, proliferation and differentiation profoundly affect ISC behavior and gut health, highlighting the complex interplay between environmental factors and gut homeostasis. Drosophila models help us understand the complex regulatory networks in the gut, providing valuable insights into disease mechanisms and therapeutic strategies targeting human intestinal diseases.
期刊介绍:
Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.