Polarization-controlled contact barriers enable giant tunneling electroresistance in van der Waals ferroelectric tunnel junctions

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Xueyan Bai, Daifeng Zou, Chihou Lei, Zhijian He, Yunya Liu
{"title":"Polarization-controlled contact barriers enable giant tunneling electroresistance in van der Waals ferroelectric tunnel junctions","authors":"Xueyan Bai, Daifeng Zou, Chihou Lei, Zhijian He, Yunya Liu","doi":"10.1063/5.0258003","DOIUrl":null,"url":null,"abstract":"The regulation of tunneling electroresistance (TER) in two-dimensional (2D) ferroelectric tunnel junctions (FTJs) is crucial for their practical applications. In this Letter, we introduce an innovative approach to manipulate TER by altering the interfacial contact barrier through polarization-induced modifications in interface transport properties. A comprehensive analysis of the electronic structures within heterostructures, consisting of a metallic TaSe2 monolayer and a ferroelectric Sc2CO2 layer, uncovers a dual modulation effect of ferroelectricity on both the Schottky barrier height and the interfacial tunneling barrier. This phenomenon substantiates the influence of polarization on charge carrier transport across the interface. Through calculations employing the non-equilibrium Green's function method, we reveal a significant TER ratio (2.41×1013%) in TaSe2/Sc2CO2-based FTJs. Our findings illustrate that distinct tunneling resistance states can be achieved through polarization reversal, as predicted by the proposed mechanism. These insights enhance the understanding of polarization-mediated TER in 2D FTJs and provide a foundation for the design of next-generation electronic devices leveraging 2D ferroelectric materials.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"27 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0258003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The regulation of tunneling electroresistance (TER) in two-dimensional (2D) ferroelectric tunnel junctions (FTJs) is crucial for their practical applications. In this Letter, we introduce an innovative approach to manipulate TER by altering the interfacial contact barrier through polarization-induced modifications in interface transport properties. A comprehensive analysis of the electronic structures within heterostructures, consisting of a metallic TaSe2 monolayer and a ferroelectric Sc2CO2 layer, uncovers a dual modulation effect of ferroelectricity on both the Schottky barrier height and the interfacial tunneling barrier. This phenomenon substantiates the influence of polarization on charge carrier transport across the interface. Through calculations employing the non-equilibrium Green's function method, we reveal a significant TER ratio (2.41×1013%) in TaSe2/Sc2CO2-based FTJs. Our findings illustrate that distinct tunneling resistance states can be achieved through polarization reversal, as predicted by the proposed mechanism. These insights enhance the understanding of polarization-mediated TER in 2D FTJs and provide a foundation for the design of next-generation electronic devices leveraging 2D ferroelectric materials.
极化控制的接触势垒在范德华铁电隧道结中实现了巨大的隧穿电阻
二维铁电隧道结(ftj)中隧穿电阻(TER)的调节对其实际应用至关重要。在这篇文章中,我们介绍了一种创新的方法,通过极化诱导的界面输运性质的改变来改变界面接触势垒来操纵TER。对由金属TaSe2单层和铁电Sc2CO2层组成的异质结构中的电子结构进行了综合分析,揭示了铁电性对肖特基势垒高度和界面隧道势垒的双重调制效应。这一现象证实了极化对载流子在界面上输运的影响。通过采用非平衡格林函数方法的计算,我们发现在基于TaSe2/ sc2co2的ftj中存在显著的TER比率(2.41×1013%)。我们的研究结果表明,通过极化反转可以实现不同的隧道阻力状态,正如所提出的机制所预测的那样。这些见解增强了对二维ftj中极化介导的TER的理解,并为利用二维铁电材料设计下一代电子器件提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信