The Inhibited Dehydration Polycondensation Tendency of a Titanocene Aqua Complex Attributed to the Formation of Hydrogen Bonds Between the Ligand Water and Py-NO: Mechanism and Application
{"title":"The Inhibited Dehydration Polycondensation Tendency of a Titanocene Aqua Complex Attributed to the Formation of Hydrogen Bonds Between the Ligand Water and Py-NO: Mechanism and Application","authors":"Lei Fan, Xiao Zhang, Shunan Zhao, Huaming Sun, Weiqiang Zhang, Yajun Jian, Ziwei Gao","doi":"10.1021/acs.inorgchem.5c00338","DOIUrl":null,"url":null,"abstract":"Titanocene aqua complexes (<b>TACs</b>) demonstrate versatile activities that critically depend on maintaining their molecular integrity in aqueous media. However, the strong oxophilicity of Ti(IV) centers renders these complexes prone to undesirable dehydration-condensation reactions, which severely compromise their structural stability. To address this challenge, we developed a simple yet effective strategy for dramatically stabilizing <b>TACs</b> in aqueous environments through the introduction of pyridine-N-oxides (<b>Py-NOs</b>) as auxiliary ligands. Comprehensive mechanistic investigations, including spectroscopic analyses and DFT calculations, reveal that the enhanced stability originates primarily from the formation of intermolecular hydrogen bonds between <b>TACs</b> and <b>Py-NOs</b>. These interactions effectively suppress Ti(IV)-mediated hydrolysis pathways while preserving the complexes’ functionality.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"33 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c00338","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Titanocene aqua complexes (TACs) demonstrate versatile activities that critically depend on maintaining their molecular integrity in aqueous media. However, the strong oxophilicity of Ti(IV) centers renders these complexes prone to undesirable dehydration-condensation reactions, which severely compromise their structural stability. To address this challenge, we developed a simple yet effective strategy for dramatically stabilizing TACs in aqueous environments through the introduction of pyridine-N-oxides (Py-NOs) as auxiliary ligands. Comprehensive mechanistic investigations, including spectroscopic analyses and DFT calculations, reveal that the enhanced stability originates primarily from the formation of intermolecular hydrogen bonds between TACs and Py-NOs. These interactions effectively suppress Ti(IV)-mediated hydrolysis pathways while preserving the complexes’ functionality.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.