{"title":"Laboratory-scale method for high-temperature gas-to-solid deposition and corrosion studies – P235GH and AISI316 exposed to PbCl2 and KCl","authors":"Jonne Niemi, Roland Balint, Juho Lehmusto","doi":"10.1016/j.ces.2025.121726","DOIUrl":null,"url":null,"abstract":"<div><div>A novel experimental setup was developed and tested to investigate high-temperature corrosion under temperature gradients. The setup considers simultaneous deposit formation and corrosion. The setup is composed of an air-cooled probe with an exchangeable vertically aligned steel sample, inserted into a hot tube furnace. The experiments were conducted by exposing P235GH and AISI316 steel samples to PbCl<sub>2</sub> and KCl. The salt material was vaporized from a crucible. The salt subsequently nucleated on the cooled sample surface. Material temperatures of 350–500 °C and atmospheric temperatures of 650–750 °C were tested. PbCl<sub>2</sub> deposition increased with higher atmospheric temperatures. In addition, the oxide layer thicknesses increased with higher material and atmospheric temperatures. The presence of KCl together with PbCl<sub>2</sub> further enhanced corrosion. The formation of FeCl<sub>2</sub> induced the formation of eutectic molten phases, enhancing the corrosion. This research contributes to understanding the challenges posed by high-temperature corrosion in waste-fired boilers.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"313 ","pages":"Article 121726"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925005494","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel experimental setup was developed and tested to investigate high-temperature corrosion under temperature gradients. The setup considers simultaneous deposit formation and corrosion. The setup is composed of an air-cooled probe with an exchangeable vertically aligned steel sample, inserted into a hot tube furnace. The experiments were conducted by exposing P235GH and AISI316 steel samples to PbCl2 and KCl. The salt material was vaporized from a crucible. The salt subsequently nucleated on the cooled sample surface. Material temperatures of 350–500 °C and atmospheric temperatures of 650–750 °C were tested. PbCl2 deposition increased with higher atmospheric temperatures. In addition, the oxide layer thicknesses increased with higher material and atmospheric temperatures. The presence of KCl together with PbCl2 further enhanced corrosion. The formation of FeCl2 induced the formation of eutectic molten phases, enhancing the corrosion. This research contributes to understanding the challenges posed by high-temperature corrosion in waste-fired boilers.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.