{"title":"ANI-1xBB: An ANI-Based Reactive Potential for Small Organic Molecules.","authors":"Shuhao Zhang,Roman Zubatyuk,Yinuo Yang,Adrian Roitberg,Olexandr Isayev","doi":"10.1021/acs.jctc.5c00347","DOIUrl":null,"url":null,"abstract":"Reactive potentials serve as essential tools for investigating chemical reactions with moderate computational costs. However, traditional reactive potentials often depend on fixed, semiempirical parameters, which limits their accuracy and transferability. Overcoming these limitations can significantly expand the applicability of reactive potentials, enabling the simulation of a broader range of reactions under diverse conditions and the prediction of reaction properties, such as barrier heights. This work introduces ANI-1xBB, a novel ANI-based reactive ML potential trained on off-equilibrium molecular conformers generated through an automated bond-breaking workflow. ANI-1xBB significantly enhances the prediction of reaction energetics, barrier heights, and bond dissociation energies, surpassing those of conventional ANI models. Our results show that ANI-1xBB improves transition state modeling and reaction pathway prediction while generalizing effectively to pericyclic reactions and radical-driven processes. Furthermore, the automated data generation strategy supports the efficient construction of large-scale, high-quality reactive data sets, reducing reliance on expensive QM calculations. This work highlights ANI-1xBB as a practical model for accelerating the development of reactive machine learning potentials, offering new opportunities for modeling reaction phenomena.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"7 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00347","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive potentials serve as essential tools for investigating chemical reactions with moderate computational costs. However, traditional reactive potentials often depend on fixed, semiempirical parameters, which limits their accuracy and transferability. Overcoming these limitations can significantly expand the applicability of reactive potentials, enabling the simulation of a broader range of reactions under diverse conditions and the prediction of reaction properties, such as barrier heights. This work introduces ANI-1xBB, a novel ANI-based reactive ML potential trained on off-equilibrium molecular conformers generated through an automated bond-breaking workflow. ANI-1xBB significantly enhances the prediction of reaction energetics, barrier heights, and bond dissociation energies, surpassing those of conventional ANI models. Our results show that ANI-1xBB improves transition state modeling and reaction pathway prediction while generalizing effectively to pericyclic reactions and radical-driven processes. Furthermore, the automated data generation strategy supports the efficient construction of large-scale, high-quality reactive data sets, reducing reliance on expensive QM calculations. This work highlights ANI-1xBB as a practical model for accelerating the development of reactive machine learning potentials, offering new opportunities for modeling reaction phenomena.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.