Algal Symbiont Diversity and Host Fitness Variation in Amoebozoan Photosymbiosis

IF 2.1 4区 生物学 Q3 MICROBIOLOGY
Daisuke Yamagishi, Ryo Onuma, Sachihiro Matsunaga, Shin-ya Miyagishima, Shinichiro Maruyama
{"title":"Algal Symbiont Diversity and Host Fitness Variation in Amoebozoan Photosymbiosis","authors":"Daisuke Yamagishi,&nbsp;Ryo Onuma,&nbsp;Sachihiro Matsunaga,&nbsp;Shin-ya Miyagishima,&nbsp;Shinichiro Maruyama","doi":"10.1111/jeu.70008","DOIUrl":null,"url":null,"abstract":"<p>Photosymbioses, the symbiotic relationships between microalgae and non-photosynthetic eukaryotes, are sporadically found in many eukaryotic lineages. Only a few taxa, such as cnidarians and ciliates hosting algal endosymbionts, have been actively studied, which has hindered understanding the universal mechanisms of photosymbiosis establishment. In Amoebozoa, few species are reported as photosymbiotic, and how the photosymbioses are established is still unclear. To investigate the extent to which one of the photosymbiotic amoebae, <i>Mayorella viridis</i>, depends on their symbionts, the amoebae were treated with reagents known to induce the collapsing of photosymbioses in other species. We succeeded in removing algal symbionts from the hosts with 2-amino-3-chloro-1,4-naphthoquinone. While the apo-symbiotic amoebae grew to the same extent as the symbiotic state when they fed on prey, their survival rates were lower than those of the symbiotic ones during starvation, suggesting that the impact of the photosymbiosis on fitness is condition-dependent. Furthermore, we showed that the photosymbiotic state was reversible by feeding two strains of the green alga <i>Chlorella</i> to the apo-symbiotic amoebae. The efficiencies of ingesting algal cells significantly differed between algal strains. These results suggest that the photosymbiotic relationship in the amoeba is facultative and that different algal strains have discrete symbiotic abilities to the amoeba.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"72 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jeu.70008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photosymbioses, the symbiotic relationships between microalgae and non-photosynthetic eukaryotes, are sporadically found in many eukaryotic lineages. Only a few taxa, such as cnidarians and ciliates hosting algal endosymbionts, have been actively studied, which has hindered understanding the universal mechanisms of photosymbiosis establishment. In Amoebozoa, few species are reported as photosymbiotic, and how the photosymbioses are established is still unclear. To investigate the extent to which one of the photosymbiotic amoebae, Mayorella viridis, depends on their symbionts, the amoebae were treated with reagents known to induce the collapsing of photosymbioses in other species. We succeeded in removing algal symbionts from the hosts with 2-amino-3-chloro-1,4-naphthoquinone. While the apo-symbiotic amoebae grew to the same extent as the symbiotic state when they fed on prey, their survival rates were lower than those of the symbiotic ones during starvation, suggesting that the impact of the photosymbiosis on fitness is condition-dependent. Furthermore, we showed that the photosymbiotic state was reversible by feeding two strains of the green alga Chlorella to the apo-symbiotic amoebae. The efficiencies of ingesting algal cells significantly differed between algal strains. These results suggest that the photosymbiotic relationship in the amoeba is facultative and that different algal strains have discrete symbiotic abilities to the amoeba.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
4.50%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信