{"title":"Sound Velocities of Zoisite at High Pressures and Temperatures and Implications for the Water Content in Subducting Oceanic Crust","authors":"Rui Zhang, Duojun Wang, Nao Cai","doi":"10.1029/2024JB030238","DOIUrl":null,"url":null,"abstract":"<p>The <i>P</i>- and <i>S</i>-wave velocities of zoisite were measured simultaneously using ultrasonic techniques under pressure and temperature of up to 11 GPa and 773 K, respectively. The results indicate that the velocity of zoisite increases with increasing pressure and decreases with increasing temperature. Using finite strain fitting, values of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>S</mi>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>129</mn>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <mtext>GPa</mtext>\n </mrow>\n <annotation> ${K}_{S0}=129(3)\\hspace*{.5em}\\text{GPa}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>K</mi>\n <mrow>\n <mi>S</mi>\n <mn>0</mn>\n </mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msubsup>\n <mo>=</mo>\n <mn>4.9</mn>\n </mrow>\n <annotation> ${K}_{S0}^{\\mathit{\\prime }}=4.9$</annotation>\n </semantics></math>(3), <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mo>=</mo>\n <mn>73</mn>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <mtext>GPa</mtext>\n </mrow>\n <annotation> ${G}_{0}=73\\hspace*{.5em}(2)\\hspace*{.5em}\\text{GPa}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>G</mi>\n <mn>0</mn>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msubsup>\n <mo>=</mo>\n <mn>2.0</mn>\n </mrow>\n <annotation> ${G}_{0}^{\\mathit{\\prime }}=2.0$</annotation>\n </semantics></math>(2), <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>G</mi>\n <mn>0</mn>\n <mrow>\n <mo>″</mo>\n </mrow>\n </msubsup>\n <mo>=</mo>\n <mo>−</mo>\n <mn>0.11</mn>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <msup>\n <mrow>\n <mspace></mspace>\n <mtext>GP</mtext>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${G}_{0}^{\\mathit{{\\prime\\prime}}}=-0.11\\hspace*{.5em}(2){\\hspace*{.5em}\\text{GP}\\mathrm{a}}^{-1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>∂</mo>\n <mi>K</mi>\n </mrow>\n <mi>S</mi>\n </msub>\n <mo>/</mo>\n <mo>∂</mo>\n <mi>T</mi>\n <mo>=</mo>\n <mo>−</mo>\n <mn>0.019</mn>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <mtext>GPa</mtext>\n <mo>/</mo>\n <mi>K</mi>\n </mrow>\n <annotation> ${\\mathit{\\partial }K}_{S}/\\mathit{\\partial }T=-0.019\\hspace*{.5em}(4)\\hspace*{.5em}\\text{GPa}/\\mathrm{K}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mo>∂</mo>\n <mi>G</mi>\n <mo>/</mo>\n <mo>∂</mo>\n <mi>T</mi>\n <mo>=</mo>\n <mo>−</mo>\n <mn>0.010</mn>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <mtext>GPa</mtext>\n <mo>/</mo>\n <mi>K</mi>\n </mrow>\n <annotation> $\\mathit{\\partial }G/\\mathit{\\partial }T=-0.010\\hspace*{.5em}(4)\\hspace*{.5em}\\text{GPa}/\\mathrm{K}$</annotation>\n </semantics></math> were obtained. The velocity structure in the region of the oceanic crust with a high velocity gradient was modeled. Our models imply that decomposition of zoisite and lawsonite into garnet may cause high velocity gradient in hot and cold subducting oceanic crusts, respectively. By combining seismological observations and the elastic properties of minerals, the average water contents in high velocity gradient regions in hot and cold oceanic crusts were estimated to be ∼2 wt% and ∼4 wt%, respectively.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030238","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The P- and S-wave velocities of zoisite were measured simultaneously using ultrasonic techniques under pressure and temperature of up to 11 GPa and 773 K, respectively. The results indicate that the velocity of zoisite increases with increasing pressure and decreases with increasing temperature. Using finite strain fitting, values of , (3), , (2), , , and were obtained. The velocity structure in the region of the oceanic crust with a high velocity gradient was modeled. Our models imply that decomposition of zoisite and lawsonite into garnet may cause high velocity gradient in hot and cold subducting oceanic crusts, respectively. By combining seismological observations and the elastic properties of minerals, the average water contents in high velocity gradient regions in hot and cold oceanic crusts were estimated to be ∼2 wt% and ∼4 wt%, respectively.
在压力和温度分别高达 11 GPa 和 773 K 的条件下,使用超声波技术同时测量了黝帘石的 P 波和 S 波速度。结果表明,黝帘石的速度随压力的增加而增加,随温度的升高而降低。Using finite strain fitting, values of K S 0 = 129 ( 3 ) GPa ${K}_{S0}=129(3)\hspace*{.5em}\text{GPa}$ , K S 0 ′ = 4.9 ${K}_{S0}^{\mathit{\prime }}=4.9$ (3), G 0 = 73 ( 2 ) GPa ${G}_{0}=73\hspace*{.5em}(2)\hspace*{.5em}\text{GPa}$ , G 0 ′ = 2.0 ${G}_{0}^{\mathit{\prime }}=2.0$ (2), G 0 ″ = − 0.11 ( 2 ) GP a − 1 ${G}_{0}^{\mathit{{\prime\prime}}}=-0.11\hspace*{.5em}(2){\hspace*{.5em}\text{GP}\mathrm{a}}^{-1}$ , ∂ K S / ∂ T = − 0.019 ( 4 ) GPa / K ${\mathit{\partial }K}_{S}/\mathit{\partial }T=-0.019\hspace*{.5em}(4)\hspace*{.5em}\text{GPa}/\mathrm{K}$ , and ∂ G / ∂ T = − 0.010 ( 4 ) GPa / K $\mathit{\partial }G/\mathit{\partial }T=-0.010\hspace*{.5em}(4)\hspace*{.5em}\text{GPa}/\mathrm{K}$ were obtained.建立了大洋地壳高速梯度区域的速度结构模型。我们的模型表明,黝帘石和铹石分解成石榴石可能分别导致热俯冲和冷俯冲洋壳的高速梯度。结合地震学观测和矿物的弹性特性,估计热壳和冷壳高速梯度区的平均含水量分别为∼2 wt%和∼4 wt%。
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.