Validation of a Microfluidic Device Prototype for Cancer Detection and Identification: Circulating Tumor Cells Classification Based on Cell Trajectory Analysis Leveraging Cell-Based Modeling and Machine Learning
{"title":"Validation of a Microfluidic Device Prototype for Cancer Detection and Identification: Circulating Tumor Cells Classification Based on Cell Trajectory Analysis Leveraging Cell-Based Modeling and Machine Learning","authors":"Rifat Rejuan, Eugenio Aulisa, Wei Li, Travis Thompson, Sanjoy Kumar, Suncica Canic, Yifan Wang","doi":"10.1002/cnm.70037","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Microfluidic devices (MDs) present a novel method for detecting circulating tumor cells (CTCs), enhancing the process through targeted techniques and visual inspection. However, current approaches often yield heterogeneous CTC populations, necessitating additional processing for comprehensive analysis and phenotype identification. These procedures are often expensive, time-consuming, and need to be performed by skilled technicians. In this study, we investigate the potential of a cost-effective and efficient hyperuniform micropost MD approach for CTC classification. Our approach combines mathematical modeling of fluid–structure interactions in a simulated microfluidic channel with machine learning techniques. Specifically, we developed a cell-based modeling framework to assess CTC dynamics in erythrocyte-laden plasma flow, generating a large dataset of CTC trajectories that account for two distinct CTC phenotypes. Convolutional neural network (CNN) and recurrent neural network (RNN) were then employed to analyze the dataset and classify these phenotypes. The results demonstrate the potential effectiveness of the hyperuniform micropost MD design and analysis approach in distinguishing between different CTC phenotypes based on cell trajectory, offering a promising avenue for early cancer detection.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70037","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidic devices (MDs) present a novel method for detecting circulating tumor cells (CTCs), enhancing the process through targeted techniques and visual inspection. However, current approaches often yield heterogeneous CTC populations, necessitating additional processing for comprehensive analysis and phenotype identification. These procedures are often expensive, time-consuming, and need to be performed by skilled technicians. In this study, we investigate the potential of a cost-effective and efficient hyperuniform micropost MD approach for CTC classification. Our approach combines mathematical modeling of fluid–structure interactions in a simulated microfluidic channel with machine learning techniques. Specifically, we developed a cell-based modeling framework to assess CTC dynamics in erythrocyte-laden plasma flow, generating a large dataset of CTC trajectories that account for two distinct CTC phenotypes. Convolutional neural network (CNN) and recurrent neural network (RNN) were then employed to analyze the dataset and classify these phenotypes. The results demonstrate the potential effectiveness of the hyperuniform micropost MD design and analysis approach in distinguishing between different CTC phenotypes based on cell trajectory, offering a promising avenue for early cancer detection.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.