{"title":"Energy Storage System Configuration for Supporting the Scheduling and Frequency Regulation of Offshore Microgrids","authors":"Longfei Liu, Jing Liu, Xiandong Xu, Xiaodan Yu, Wei Wei, Hongjie Jia","doi":"10.1049/cps2.70010","DOIUrl":null,"url":null,"abstract":"<p>Offshore microgrids such as oil and gas platforms are embracing wind power to reduce onsite gas consumption and carbon emission. Meanwhile, the intermittency of wind power threats the operational security of offshore microgrids which are mainly islanded cyber-physical system. Although energy storage system (ESS) could smooth the wind power, it also changes the operational strategy of the microgrids. Yet, it is still not clear on how to determine the ESS configuration, particularly for MW-level offshore microgrid with limited rooms for ESS installment. In this paper, an optimal ESS configuration method is proposed to support operational scheduling and frequency regulation of the microgrids at different time scales. A source-storage-load coordinated frequency response model is proposed to exploit the advantages of different types of ESS. The model is converted to convex quadratic forms and incorporated into the ESS configuration model to guarantee the frequency stability of offshore microgrids. The proposed ESS configuration method is validated using the data of a real offshore oil and gas platform. Compared with existing methods, the full life cycle economic efficiency, wind power utilisation, and operational security are all significantly improved.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":"10 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.70010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Offshore microgrids such as oil and gas platforms are embracing wind power to reduce onsite gas consumption and carbon emission. Meanwhile, the intermittency of wind power threats the operational security of offshore microgrids which are mainly islanded cyber-physical system. Although energy storage system (ESS) could smooth the wind power, it also changes the operational strategy of the microgrids. Yet, it is still not clear on how to determine the ESS configuration, particularly for MW-level offshore microgrid with limited rooms for ESS installment. In this paper, an optimal ESS configuration method is proposed to support operational scheduling and frequency regulation of the microgrids at different time scales. A source-storage-load coordinated frequency response model is proposed to exploit the advantages of different types of ESS. The model is converted to convex quadratic forms and incorporated into the ESS configuration model to guarantee the frequency stability of offshore microgrids. The proposed ESS configuration method is validated using the data of a real offshore oil and gas platform. Compared with existing methods, the full life cycle economic efficiency, wind power utilisation, and operational security are all significantly improved.