Minimal limit key polynomials

IF 1 2区 数学 Q1 MATHEMATICS
Enric Nart, Josnei Novacoski
{"title":"Minimal limit key polynomials","authors":"Enric Nart,&nbsp;Josnei Novacoski","doi":"10.1112/jlms.70162","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we extend the theory of minimal limit key polynomials of valuations on the polynomial ring <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mo>[</mo>\n <mi>x</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$K[x]$</annotation>\n </semantics></math>. Minimal key polynomials are useful to describe, for instance, the defect of an extension of valued fields. We use the theory of cuts on ordered abelian groups to show that the previous results on bounded sets of key polynomials of rank one valuations extend to vertically bounded sets of key polynomials of valuations of an arbitrary rank. We also discuss properties of minimal limit key polynomials in the vertically unbounded case.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70162","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70162","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend the theory of minimal limit key polynomials of valuations on the polynomial ring K [ x ] $K[x]$ . Minimal key polynomials are useful to describe, for instance, the defect of an extension of valued fields. We use the theory of cuts on ordered abelian groups to show that the previous results on bounded sets of key polynomials of rank one valuations extend to vertically bounded sets of key polynomials of valuations of an arbitrary rank. We also discuss properties of minimal limit key polynomials in the vertically unbounded case.

Abstract Image

最小极限键多项式
本文推广了多项式环K[x]$ K[x]$上赋值的最小极限键多项式理论。最小键多项式用于描述,例如,值域扩展的缺陷。利用有序阿贝尔群上的切理论,证明了先前关于秩一赋值键多项式的有界集的结果可以推广到任意秩赋值键多项式的垂直有界集。我们还讨论了垂直无界情况下最小极限键多项式的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信