On Lanzhou and Ad-hoc Lanzhou Indices of Derived Graphs and Silicate Structures

IF 2.8 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Silicon Pub Date : 2025-02-26 DOI:10.1007/s12633-025-03258-y
Madhumitha K. V., Harshitha A., Swati Nayak, Sabitha D’Souza
{"title":"On Lanzhou and Ad-hoc Lanzhou Indices of Derived Graphs and Silicate Structures","authors":"Madhumitha K. V.,&nbsp;Harshitha A.,&nbsp;Swati Nayak,&nbsp;Sabitha D’Souza","doi":"10.1007/s12633-025-03258-y","DOIUrl":null,"url":null,"abstract":"<div><p>Degree-based topological indices are among the most widely used descriptors in chemical graph theory. These indices rely on the degrees (or valencies) of the vertices in a molecular graph, where the degree of a vertex corresponds to the number of edges (bonds) connected to it. One among these types of indices is the Lanzhou index, given by <span>\\( Lz(G) = \\sum \\limits _{a\\in V(G)}d_G(a)^2d_{\\overline{G}}(a),\\)</span> where <span>\\(d_G(a)\\)</span> and <span>\\(d_{\\overline{G}}(a)\\)</span> denote the degree of the vertex <i>a</i> in <i>G</i> and the complement graph of <i>G</i>, respectively. Ad-hoc Lanzhou index, <span>\\(\\overline{Lz}(G)\\)</span> is obtained by switching the roles of degrees of vertices, i.e., <span>\\(\\overline{Lz}(G)=\\sum \\limits _{a \\in V(G)}d_G(a)d_{\\overline{G}}(a)^2.\\)</span> In this manuscript, expressions for the Lanzhou and Ad-hoc Lanzhou indices of derived graphs, namely, subdivision, line, vertex semi-total, edge semi-total, and total graphs, are obtained. Also, Lanzhou and Ad-hoc Lanzhou indices of <span>\\(Si_2C_3-\\MakeUppercase {i}(s,t),\\ Si_2C_3-\\MakeUppercase {ii}(s,t),\\)</span> and <span>\\(Si_2C_3-\\MakeUppercase {iii}(s,t)\\)</span> are obtained and their graphical analysis have been made.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 5","pages":"1115 - 1127"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12633-025-03258-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-025-03258-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Degree-based topological indices are among the most widely used descriptors in chemical graph theory. These indices rely on the degrees (or valencies) of the vertices in a molecular graph, where the degree of a vertex corresponds to the number of edges (bonds) connected to it. One among these types of indices is the Lanzhou index, given by \( Lz(G) = \sum \limits _{a\in V(G)}d_G(a)^2d_{\overline{G}}(a),\) where \(d_G(a)\) and \(d_{\overline{G}}(a)\) denote the degree of the vertex a in G and the complement graph of G, respectively. Ad-hoc Lanzhou index, \(\overline{Lz}(G)\) is obtained by switching the roles of degrees of vertices, i.e., \(\overline{Lz}(G)=\sum \limits _{a \in V(G)}d_G(a)d_{\overline{G}}(a)^2.\) In this manuscript, expressions for the Lanzhou and Ad-hoc Lanzhou indices of derived graphs, namely, subdivision, line, vertex semi-total, edge semi-total, and total graphs, are obtained. Also, Lanzhou and Ad-hoc Lanzhou indices of \(Si_2C_3-\MakeUppercase {i}(s,t),\ Si_2C_3-\MakeUppercase {ii}(s,t),\) and \(Si_2C_3-\MakeUppercase {iii}(s,t)\) are obtained and their graphical analysis have been made.

衍生图和硅酸盐结构的兰州指数和特设兰州指数
基于度的拓扑指数是化学图论中应用最广泛的描述符之一。这些指标依赖于分子图中顶点的度(或价),其中顶点的度对应于与其相连的边(键)的数量。其中一种指标是兰州指数,由\( Lz(G) = \sum \limits _{a\in V(G)}d_G(a)^2d_{\overline{G}}(a),\)给出,其中\(d_G(a)\)和\(d_{\overline{G}}(a)\)分别表示G和G的补图中顶点a的度数。通过交换顶点度的作用得到Ad-hoc兰州指数\(\overline{Lz}(G)\),即\(\overline{Lz}(G)=\sum \limits _{a \in V(G)}d_G(a)d_{\overline{G}}(a)^2.\)。本文给出了派生图的兰州指数和Ad-hoc兰州指数的表达式,即细分图、线图、顶点半全图、边半全图和全图。求得了\(Si_2C_3-\MakeUppercase {i}(s,t),\ Si_2C_3-\MakeUppercase {ii}(s,t),\)和\(Si_2C_3-\MakeUppercase {iii}(s,t)\)的兰州指数和特设兰州指数,并对它们进行了图形化分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信