Sudhir K. Shukla, Dugeshwar Karley, Namrata Upadhyay, T. Subba Rao
{"title":"Microbially-influenced corrosion in low carbon stainless steel (SS-304L) by viable but non-culturable (VBNC) bacteria of spent nuclear fuel pool","authors":"Sudhir K. Shukla, Dugeshwar Karley, Namrata Upadhyay, T. Subba Rao","doi":"10.1007/s00203-025-04268-5","DOIUrl":null,"url":null,"abstract":"<div><p>Microorganisms can pose significant challenges in causing corrosion of low carbon stainless steel (SS-304L) in closed dynamic systems such as spent nuclear fuel (SNF) pools This study investigates the corrosion behaviour of SS-304L in the presence of biofilm-forming bacteria and ‘viable but non-culturable’ (VBNC) bacteria present in SNF pool water. Electrochemical measurements such as, open circuit potential (E<sub>OCP</sub>), pitting potential (E<sub>pit</sub>), and corrosion rate were measured. Confocal and metallurgical microscopy, were used to provide insights into biofilm morphology and localized corrosion features. Confocal scanning laser microscopy analysis showed variation in biofilm morphology and distribution. The uniform biofilm growth by the four SNF bacterial isolates exhibited corrosion inhibition property. Electrochemical measurements, such as E<sub>OCP</sub> and E<sub>pit</sub>, revealed the putative role of VBNC bacteria in the corrosion of SS-304L. Electrochemical impedance spectroscopy study also showed the role of biofilm mediated corrosion inhibition property. Biochemical characterization of extracellular polymeric substance of biofilms revealed very high protein content, which provided an interesting hypothesis regarding SS-304L corrosion prevention. The formation of biofilm protective layer and the probability for localized corrosion by SNF pool water bacteria are described. This study elucidates the complex interplay between microbial biofilms and plausible corrosion in the SNF pool environment that has critical implications to the nuclear power industry.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04268-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microorganisms can pose significant challenges in causing corrosion of low carbon stainless steel (SS-304L) in closed dynamic systems such as spent nuclear fuel (SNF) pools This study investigates the corrosion behaviour of SS-304L in the presence of biofilm-forming bacteria and ‘viable but non-culturable’ (VBNC) bacteria present in SNF pool water. Electrochemical measurements such as, open circuit potential (EOCP), pitting potential (Epit), and corrosion rate were measured. Confocal and metallurgical microscopy, were used to provide insights into biofilm morphology and localized corrosion features. Confocal scanning laser microscopy analysis showed variation in biofilm morphology and distribution. The uniform biofilm growth by the four SNF bacterial isolates exhibited corrosion inhibition property. Electrochemical measurements, such as EOCP and Epit, revealed the putative role of VBNC bacteria in the corrosion of SS-304L. Electrochemical impedance spectroscopy study also showed the role of biofilm mediated corrosion inhibition property. Biochemical characterization of extracellular polymeric substance of biofilms revealed very high protein content, which provided an interesting hypothesis regarding SS-304L corrosion prevention. The formation of biofilm protective layer and the probability for localized corrosion by SNF pool water bacteria are described. This study elucidates the complex interplay between microbial biofilms and plausible corrosion in the SNF pool environment that has critical implications to the nuclear power industry.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.