Afsaneh Abareshi, Mohammad Mahdi Shahidi, Nasrin Salehi
{"title":"Comparison of structural, optical, and thermal properties in MoS2 based nanocomposites into cancer therapy","authors":"Afsaneh Abareshi, Mohammad Mahdi Shahidi, Nasrin Salehi","doi":"10.1007/s10856-025-06883-6","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of the present study is to evaluate the potential of novel molybdenum disulfide (MoS<sub>2</sub>)-based nanocomposites for photothermal therapy. For this purpose, MoS<sub>2</sub>-CuS (MoCS) and MoS<sub>2</sub>-AuNR (MoAu) nanocomposites were synthesized by physically mixing MoS<sub>2</sub> suspensions with CuS and AuNRs, respectively. The structural and optical properties of these nanocomposites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV–Vis) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The photothermal performance of the nanocomposites was assessed under near-infrared (NIR) radiation at a power density of 1 W/cm<sup>2</sup> for 10 min. The results demonstrated that both MoCS and MoAu nanocomposites exhibited enhanced photothermal heating compared to their individual components. Furthermore, the MoAu nanocomposite generated higher photothermal heat than the MoCS nanocomposite. These findings suggest that the MoCS and MoAu nanocomposites have strong potential as novel photothermal agents for cancer therapy.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-025-06883-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-025-06883-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of the present study is to evaluate the potential of novel molybdenum disulfide (MoS2)-based nanocomposites for photothermal therapy. For this purpose, MoS2-CuS (MoCS) and MoS2-AuNR (MoAu) nanocomposites were synthesized by physically mixing MoS2 suspensions with CuS and AuNRs, respectively. The structural and optical properties of these nanocomposites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV–Vis) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The photothermal performance of the nanocomposites was assessed under near-infrared (NIR) radiation at a power density of 1 W/cm2 for 10 min. The results demonstrated that both MoCS and MoAu nanocomposites exhibited enhanced photothermal heating compared to their individual components. Furthermore, the MoAu nanocomposite generated higher photothermal heat than the MoCS nanocomposite. These findings suggest that the MoCS and MoAu nanocomposites have strong potential as novel photothermal agents for cancer therapy.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.