{"title":"Eddy Current Induced in a Finite-Length Tube by a C-Core Sensor in Arbitrary Axial Position","authors":"Yike Xiang;Yao Luo;Zhiye Du;Grzegorz Tytko;Yuneng Wang;Zhichao Chen","doi":"10.1109/TMAG.2025.3554762","DOIUrl":null,"url":null,"abstract":"The enhanced truncated region eigenfunction expansion (enhanced TREE) method is employed to derive an analytical model of a finite-length metal tube tested by a C-core coil in an arbitrary axial position. The vector potential and the coil impedance variation are calculated. To develop an efficient algorithm, the 1-D finite element method (1-D FEM), vector normalization, and Clenshaw-Curtis quadrature are integrated. To improve the computation performance of the complex eigenvalues with large imaginary parts, a coordinate transformation technique is implemented within the Arnoldi iteration. The efficacy of the proposed approach is validated by comparing the theoretical predictions with experimental results.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 5","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10942453/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The enhanced truncated region eigenfunction expansion (enhanced TREE) method is employed to derive an analytical model of a finite-length metal tube tested by a C-core coil in an arbitrary axial position. The vector potential and the coil impedance variation are calculated. To develop an efficient algorithm, the 1-D finite element method (1-D FEM), vector normalization, and Clenshaw-Curtis quadrature are integrated. To improve the computation performance of the complex eigenvalues with large imaginary parts, a coordinate transformation technique is implemented within the Arnoldi iteration. The efficacy of the proposed approach is validated by comparing the theoretical predictions with experimental results.
期刊介绍:
Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.