Two Generic Constructions of MDS Array Codes With Optimal Repair Bandwidth From Two Special Sets

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hongwei Zhu;Jingjie Lv;Shu-Tao Xia;Hanxu Hou
{"title":"Two Generic Constructions of MDS Array Codes With Optimal Repair Bandwidth From Two Special Sets","authors":"Hongwei Zhu;Jingjie Lv;Shu-Tao Xia;Hanxu Hou","doi":"10.1109/TIT.2025.3545109","DOIUrl":null,"url":null,"abstract":"The maximum distance separable (MDS) codes are the optimal codes to achieve Singleton bound, providing maximum error tolerance under a given number of parity nodes. Ye and Barg leveraged permutation matrices and Reed-Solomon type codes to devise 7 explicit constructions for constructing MDS array codes with optimal repair property (as known as MSR codes) or even optimal access property. Drawing inspiration from these explicit constructions, we provide two generic constructions for constructing MSR codes from high-rate MDS codes or MDS array codes. In this paper, we introduce the concepts of s-pairwise MDS codes sets and s-pairwise MDS array codes sets. Two generic constructions (<xref>Generic Constructions I</xref> and <xref>II</xref>) for constructing the MSR code using the <italic>s</i>-pairwise MDS codes sets or the <italic>s</i>-pairwise MDS array codes sets are given. Constructions 1 to 3 proposed by Ye and Barg can be regarded as some special cases of <xref>Generic Construction I</xref>, and Constructions 1 to 3 proposed by Li et al., can be regarded as some special cases of <xref>Generic Construction II</xref>. It is worth mentioning that <xref>Generic Construction II</xref> can be applied to any finite field, including the binary field. We also demonstrate how to obtain the <italic>s</i>-pairwise MDS code sets and the <italic>s</i>-pairwise MDS array code sets from a high-rate MDS code or MDS array code over <inline-formula> <tex-math>$\\mathbb {F}_{q}$ </tex-math></inline-formula>. We obtain a novel class of MSR codes by utilizing the MDS array codes provided by Lv et al., as component codes according to <xref>Generic Construction II</xref>. As a byproduct of Constructions 4 to 7, we obtain a new class of MSR codes with optimal access property. Using two types of sets <inline-formula> <tex-math>$\\Gamma _{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\Gamma _{2}$ </tex-math></inline-formula> with the property that matrices commute, we present several new constructions for MSR codes with the optimal access property over any finite field. In this paper, compared with the constructions over binary field proposed by Li et al., the sub-packetization of our constructions applicable to the binary field is significantly reduced.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3582-3601"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10902514/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The maximum distance separable (MDS) codes are the optimal codes to achieve Singleton bound, providing maximum error tolerance under a given number of parity nodes. Ye and Barg leveraged permutation matrices and Reed-Solomon type codes to devise 7 explicit constructions for constructing MDS array codes with optimal repair property (as known as MSR codes) or even optimal access property. Drawing inspiration from these explicit constructions, we provide two generic constructions for constructing MSR codes from high-rate MDS codes or MDS array codes. In this paper, we introduce the concepts of s-pairwise MDS codes sets and s-pairwise MDS array codes sets. Two generic constructions (Generic Constructions I and II) for constructing the MSR code using the s-pairwise MDS codes sets or the s-pairwise MDS array codes sets are given. Constructions 1 to 3 proposed by Ye and Barg can be regarded as some special cases of Generic Construction I, and Constructions 1 to 3 proposed by Li et al., can be regarded as some special cases of Generic Construction II. It is worth mentioning that Generic Construction II can be applied to any finite field, including the binary field. We also demonstrate how to obtain the s-pairwise MDS code sets and the s-pairwise MDS array code sets from a high-rate MDS code or MDS array code over $\mathbb {F}_{q}$ . We obtain a novel class of MSR codes by utilizing the MDS array codes provided by Lv et al., as component codes according to Generic Construction II. As a byproduct of Constructions 4 to 7, we obtain a new class of MSR codes with optimal access property. Using two types of sets $\Gamma _{1}$ and $\Gamma _{2}$ with the property that matrices commute, we present several new constructions for MSR codes with the optimal access property over any finite field. In this paper, compared with the constructions over binary field proposed by Li et al., the sub-packetization of our constructions applicable to the binary field is significantly reduced.
具有最优修复带宽的两个特殊集的MDS阵列码的两种通用结构
最大距离可分离码(MDS)是实现单例绑定的最优码,在给定的校验节点数下提供最大的容错性。Ye和Barg利用置换矩阵和Reed-Solomon型码设计了7种显式结构,用于构造具有最优修复性能(称为MSR码)甚至最优访问性能的MDS阵列码。从这些明确的结构中获得灵感,我们提供了两种从高速率MDS代码或MDS阵列代码构建MSR代码的通用结构。本文介绍了s对MDS码集和s对MDS阵列码集的概念。给出了使用s对MDS码集或s对MDS阵列码集构造MSR码的两种通用结构(通用结构I和通用结构II)。Ye和Barg提出的构式1 ~ 3可视为属构式I的一些特例,Li等人提出的构式1 ~ 3可视为属构式II的一些特例。值得一提的是,一般构造II可以应用于任何有限域,包括二元域。我们还演示了如何从高速率MDS代码或$\mathbb {F}_{q}$上的MDS数组代码中获得s对MDS代码集和s对MDS数组代码集。我们利用Lv等人提供的MDS阵列码作为组件码,根据Generic Construction II获得了一类新的MSR码。作为构造4到构造7的副产品,我们得到了一类新的具有最优接入性能的MSR码。利用具有矩阵可交换性质的两类集$\Gamma _{1}$和$\Gamma _{2}$,给出了在任意有限域上具有最优访问性质的MSR码的几种新结构。在本文中,与Li等人提出的二元域上的结构相比,我们的结构适用于二元域的子分组性显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信