Determining the Covering Radius of All Generalized Zetterberg Codes in Odd Characteristic

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Minjia Shi;Shitao Li;Tor Helleseth;Ferruh Özbudak
{"title":"Determining the Covering Radius of All Generalized Zetterberg Codes in Odd Characteristic","authors":"Minjia Shi;Shitao Li;Tor Helleseth;Ferruh Özbudak","doi":"10.1109/TIT.2025.3544025","DOIUrl":null,"url":null,"abstract":"For an integer <inline-formula> <tex-math>$s\\ge 1$ </tex-math></inline-formula>, let <inline-formula> <tex-math>${\\mathcal {C}}_{s}(q_{0})$ </tex-math></inline-formula> be the generalized Zetterberg code of length <inline-formula> <tex-math>$q_{0}^{s}+1$ </tex-math></inline-formula> over the finite field <inline-formula> <tex-math>${\\mathbb {F}}_{q_{0}}$ </tex-math></inline-formula> of odd characteristic. Recently, Shi et al. determined the covering radius of <inline-formula> <tex-math>${\\mathcal {C}}_{s}(q_{0})$ </tex-math></inline-formula> for <inline-formula> <tex-math>$q_{0}^{s} \\cancel {\\equiv }7 \\pmod {8}$ </tex-math></inline-formula>, and left the remaining case as an open problem. In this paper, we develop a general technique involving arithmetic of finite fields and algebraic curves over finite fields to determine the covering radius of all generalized Zetterberg codes for <inline-formula> <tex-math>$q_{0}^{s} \\equiv 7 \\pmod {8}$ </tex-math></inline-formula>, which therefore solves this open problem. We also introduce the concept of twisted half generalized Zetterberg codes of length <inline-formula> <tex-math>$\\frac {q_{0}^{s}+1}{2}$ </tex-math></inline-formula>, and show the same results hold for them. As a result, we obtain some quasi-perfect codes.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3602-3613"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10896697/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

For an integer $s\ge 1$ , let ${\mathcal {C}}_{s}(q_{0})$ be the generalized Zetterberg code of length $q_{0}^{s}+1$ over the finite field ${\mathbb {F}}_{q_{0}}$ of odd characteristic. Recently, Shi et al. determined the covering radius of ${\mathcal {C}}_{s}(q_{0})$ for $q_{0}^{s} \cancel {\equiv }7 \pmod {8}$ , and left the remaining case as an open problem. In this paper, we develop a general technique involving arithmetic of finite fields and algebraic curves over finite fields to determine the covering radius of all generalized Zetterberg codes for $q_{0}^{s} \equiv 7 \pmod {8}$ , which therefore solves this open problem. We also introduce the concept of twisted half generalized Zetterberg codes of length $\frac {q_{0}^{s}+1}{2}$ , and show the same results hold for them. As a result, we obtain some quasi-perfect codes.
确定奇特征下所有广义Zetterberg码的覆盖半径
对于整数$s\ge 1$,设${\mathcal {C}}_{s}(q_{0})$为奇数特征有限域${\mathbb {F}}_{q_{0}}$上长度为$q_{0}^{s}+1$的广义Zetterberg码。最近,Shi等人确定了$q_{0}^{s} \cancel {\equiv }7 \pmod {8}$的${\mathcal {C}}_{s}(q_{0})$覆盖半径,剩下的病例作为一个开放问题。在本文中,我们发展了一种涉及有限域算法和有限域上代数曲线的一般技术来确定$q_{0}^{s} \equiv 7 \pmod {8}$的所有广义Zetterberg码的覆盖半径,从而解决了这个开放问题。我们还引入了长度为$\frac {q_{0}^{s}+1}{2}$的扭曲半广义Zetterberg码的概念,并给出了同样的结果。结果,我们得到了一些准完美码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信