{"title":"Cylindrical and Möbius Quantum Codes for Asymmetric Pauli Errors","authors":"Lorenzo Valentini;Diego Forlivesi;Marco Chiani","doi":"10.1109/TIT.2025.3546769","DOIUrl":null,"url":null,"abstract":"In the implementation of quantum information systems, one type of Pauli error, such as phase-flip errors, may occur more frequently than others, like bit-flip errors. For this reason, quantum error-correcting codes that handle asymmetric errors are critical to mitigating the impact of such impairments. To this aim, several asymmetric quantum codes have been proposed. These include variants of surface codes like the XZZX and ZZZY surface codes, tailored to preserve quantum information in the presence of error asymmetries. In this work, we propose two classes of Calderbank, Shor and Steane (CSS) topological codes, referred to as cylindrical and Möbius codes, particular cases of the fiber bundle family. Cylindrical codes maintain a fully planar structure, while Möbius codes are quasi-planar, with minimal non-local qubit interactions. We construct these codes employing the algebraic chain complexes formalism, providing theoretical upper bounds for the logical error rate. Our results demonstrate that cylindrical and Möbius codes outperform standard surface codes when using the minimum weight perfect matching (MWPM) decoder.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3766-3778"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908353/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the implementation of quantum information systems, one type of Pauli error, such as phase-flip errors, may occur more frequently than others, like bit-flip errors. For this reason, quantum error-correcting codes that handle asymmetric errors are critical to mitigating the impact of such impairments. To this aim, several asymmetric quantum codes have been proposed. These include variants of surface codes like the XZZX and ZZZY surface codes, tailored to preserve quantum information in the presence of error asymmetries. In this work, we propose two classes of Calderbank, Shor and Steane (CSS) topological codes, referred to as cylindrical and Möbius codes, particular cases of the fiber bundle family. Cylindrical codes maintain a fully planar structure, while Möbius codes are quasi-planar, with minimal non-local qubit interactions. We construct these codes employing the algebraic chain complexes formalism, providing theoretical upper bounds for the logical error rate. Our results demonstrate that cylindrical and Möbius codes outperform standard surface codes when using the minimum weight perfect matching (MWPM) decoder.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.