Harnessing dynamic capabilities for data-driven business model innovation in incumbents

Shailesh Tripathi , Nadine Bachmann , Manuel Brunner , Herbert Jodlbauer
{"title":"Harnessing dynamic capabilities for data-driven business model innovation in incumbents","authors":"Shailesh Tripathi ,&nbsp;Nadine Bachmann ,&nbsp;Manuel Brunner ,&nbsp;Herbert Jodlbauer","doi":"10.1016/j.digbus.2025.100124","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven business model innovation (DDBMI) leverages digital technologies to seize opportunities and address challenges, yet incumbents often struggle due to their reliance on existing capabilities. This study investigates the dynamic capabilities (DCs) incumbents need for DDBMI. It employs a multistage literature search, topic modeling to identify nine DDBMI global themes, thematic synthesis to generalize these themes, and qualitative content analysis to delineate the digital and strategic DCs necessary for their implementation. The study presents a structured approach to DDBMI through the development of the value-added concept, elaborated via four interrelated frameworks that (1) list DCs applied in DDBMI, (2) outline how to define, identify, and deploy DCs, (3) integrate DC implementation into the DDBMI process, and (4) map the value-added concept onto the four phases of the BMI process. Methodologically, the study advances data-driven literature reviews by adopting a multi-method approach. Theoretically, it contributes to DC theory by integrating it with DDBMI and identifying DCs as key enablers of the successful implementation of DDBMs. Practically, we provide guidance for practitioners on defining, identifying, and deploying DCs to drive value creation and sustainability in DDBMI through our proposed meta-level conceptual framework.</div></div>","PeriodicalId":100376,"journal":{"name":"Digital Business","volume":"5 2","pages":"Article 100124"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Business","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666954425000195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven business model innovation (DDBMI) leverages digital technologies to seize opportunities and address challenges, yet incumbents often struggle due to their reliance on existing capabilities. This study investigates the dynamic capabilities (DCs) incumbents need for DDBMI. It employs a multistage literature search, topic modeling to identify nine DDBMI global themes, thematic synthesis to generalize these themes, and qualitative content analysis to delineate the digital and strategic DCs necessary for their implementation. The study presents a structured approach to DDBMI through the development of the value-added concept, elaborated via four interrelated frameworks that (1) list DCs applied in DDBMI, (2) outline how to define, identify, and deploy DCs, (3) integrate DC implementation into the DDBMI process, and (4) map the value-added concept onto the four phases of the BMI process. Methodologically, the study advances data-driven literature reviews by adopting a multi-method approach. Theoretically, it contributes to DC theory by integrating it with DDBMI and identifying DCs as key enablers of the successful implementation of DDBMs. Practically, we provide guidance for practitioners on defining, identifying, and deploying DCs to drive value creation and sustainability in DDBMI through our proposed meta-level conceptual framework.
利用动态能力,在现有企业中实现数据驱动的商业模式创新
数据驱动的商业模式创新(DDBMI)利用数字技术抓住机遇并应对挑战,但现有企业往往由于依赖现有能力而陷入困境。本研究探讨在职人员在DDBMI中所需要的动态能力。它采用多阶段文献检索、主题建模来确定9个DDBMI全球主题、主题综合来概括这些主题,以及定性内容分析来描述实施DDBMI所需的数字和战略dc。该研究通过增值概念的发展提出了一种结构化的DDBMI方法,并通过四个相互关联的框架加以阐述:(1)列出DDBMI中应用的数据中心,(2)概述如何定义、识别和部署数据中心,(3)将数据中心实现集成到DDBMI过程中,(4)将增值概念映射到BMI过程的四个阶段。在方法上,本研究采用多方法方法推进数据驱动的文献综述。从理论上讲,它通过将数据中心理论与DDBMI集成,并将数据中心确定为成功实现数据中心的关键推动者,从而对数据中心理论做出了贡献。实际上,我们通过我们提出的元级概念框架,为从业者提供了定义、识别和部署dc的指导,以推动DDBMI中的价值创造和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信