Quantifying the contribution of periodicity and national holidays to air pollution levels in the United Kingdom using a decomposable time series model

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Christopher E. Rushton, James E. Tate
{"title":"Quantifying the contribution of periodicity and national holidays to air pollution levels in the United Kingdom using a decomposable time series model","authors":"Christopher E. Rushton,&nbsp;James E. Tate","doi":"10.1016/j.apr.2025.102533","DOIUrl":null,"url":null,"abstract":"<div><div>This paper quantifies the impact of periodicity and national holidays on air pollution levels in the United Kingdom using a decomposable time series forecasting model. The analysis focuses on nitrogen dioxide (<span><math><mrow><mi>N</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) concentrations, with data sourced from the Automatic Urban and Rural Network and Air Quality England networks between January 2017 and December 2023. The Prophet model developed by Meta is used to identify, quantify, and appropriately remove the temporal periodicities in air pollution concentration, demonstrating how annual holidays such as Christmas, and one-off events, such as the state funeral of Elizabeth II and the London Marathon, influence local air pollution in isolation. The findings provide empirical evidence supporting widely held assumptions around national holidays and show some localised reductions in <span><math><mrow><mi>N</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> concentrations during major events, with contextual variation also observed. For example, the state funeral of Elizabeth II shows a reduction in <span><math><mrow><mn>21</mn><mo>.</mo><mn>15</mn><mspace></mspace><mi>μ</mi><mi>g</mi><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> compared to a median reduction of <span><math><mrow><mo>−</mo><mn>2</mn><mo>.</mo><mn>43</mn><mspace></mspace><mi>μ</mi><mi>g</mi><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> outside of London for urban traffic sites. This paper emphasises the need for localised air pollution mitigation policies and demonstrates the utility of large, complete, and publicly available datasets coupled with modern forecasting tools in environmental research.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 8","pages":"Article 102533"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225001357","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper quantifies the impact of periodicity and national holidays on air pollution levels in the United Kingdom using a decomposable time series forecasting model. The analysis focuses on nitrogen dioxide (NO2) concentrations, with data sourced from the Automatic Urban and Rural Network and Air Quality England networks between January 2017 and December 2023. The Prophet model developed by Meta is used to identify, quantify, and appropriately remove the temporal periodicities in air pollution concentration, demonstrating how annual holidays such as Christmas, and one-off events, such as the state funeral of Elizabeth II and the London Marathon, influence local air pollution in isolation. The findings provide empirical evidence supporting widely held assumptions around national holidays and show some localised reductions in NO2 concentrations during major events, with contextual variation also observed. For example, the state funeral of Elizabeth II shows a reduction in 21.15μgm3 compared to a median reduction of 2.43μgm3 outside of London for urban traffic sites. This paper emphasises the need for localised air pollution mitigation policies and demonstrates the utility of large, complete, and publicly available datasets coupled with modern forecasting tools in environmental research.
使用可分解时间序列模型量化周期性和国家假日对英国空气污染水平的贡献
本文使用可分解时间序列预测模型量化了周期性和国定假日对英国空气污染水平的影响。该分析的重点是二氧化氮(NO2)浓度,数据来自2017年1月至2023年12月期间的自动城乡网络和英格兰空气质量网络。Meta开发的Prophet模型用于识别、量化和适当地去除空气污染浓度的时间周期性,展示了圣诞节等年度假期以及伊丽莎白二世的国葬和伦敦马拉松等一次性事件如何孤立地影响当地空气污染。研究结果提供了经验证据,支持围绕国家法定假日的广泛假设,并显示在重大事件期间二氧化氮浓度会出现一些局部减少,同时也观察到环境差异。例如,伊丽莎白二世的国葬减少了21.15μgm - 3,而伦敦以外城市交通站点的中值减少了- 2.43μgm - 3。本文强调了本地化空气污染缓解政策的必要性,并展示了大型、完整和可公开获得的数据集与现代预测工具相结合在环境研究中的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信