A hyperbolic relaxation approximation of the incompressible Navier-Stokes equations with artificial compressibility

IF 2.4 2区 数学 Q1 MATHEMATICS
Qian Huang , Christian Rohde , Wen-An Yong , Ruixi Zhang
{"title":"A hyperbolic relaxation approximation of the incompressible Navier-Stokes equations with artificial compressibility","authors":"Qian Huang ,&nbsp;Christian Rohde ,&nbsp;Wen-An Yong ,&nbsp;Ruixi Zhang","doi":"10.1016/j.jde.2025.113339","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a new hyperbolic approximation to the incompressible Navier-Stokes equations by incorporating a first-order relaxation and using the artificial compressibility method. With two relaxation parameters in the model, we rigorously prove the asymptotic limit of the system towards the incompressible Navier-Stokes equations as both parameters tend to zero. Notably, the convergence of the approximate pressure variable is achieved by the help of a linear ‘auxiliary’ system and energy-type error estimates of the differences between the two-parameter model and the Navier-Stokes equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113339"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003663","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new hyperbolic approximation to the incompressible Navier-Stokes equations by incorporating a first-order relaxation and using the artificial compressibility method. With two relaxation parameters in the model, we rigorously prove the asymptotic limit of the system towards the incompressible Navier-Stokes equations as both parameters tend to zero. Notably, the convergence of the approximate pressure variable is achieved by the help of a linear ‘auxiliary’ system and energy-type error estimates of the differences between the two-parameter model and the Navier-Stokes equations.
具有人工可压缩性的不可压缩Navier-Stokes方程的双曲松弛近似
通过引入一阶松弛并采用人工可压缩性方法,对不可压缩的Navier-Stokes方程引入了新的双曲近似。当模型中有两个松弛参数时,我们严格证明了系统对不可压缩Navier-Stokes方程趋近于零时的渐近极限。值得注意的是,近似压力变量的收敛是通过线性“辅助”系统和双参数模型与Navier-Stokes方程之间差异的能量型误差估计来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信