{"title":"A hyperbolic relaxation approximation of the incompressible Navier-Stokes equations with artificial compressibility","authors":"Qian Huang , Christian Rohde , Wen-An Yong , Ruixi Zhang","doi":"10.1016/j.jde.2025.113339","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a new hyperbolic approximation to the incompressible Navier-Stokes equations by incorporating a first-order relaxation and using the artificial compressibility method. With two relaxation parameters in the model, we rigorously prove the asymptotic limit of the system towards the incompressible Navier-Stokes equations as both parameters tend to zero. Notably, the convergence of the approximate pressure variable is achieved by the help of a linear ‘auxiliary’ system and energy-type error estimates of the differences between the two-parameter model and the Navier-Stokes equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113339"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003663","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new hyperbolic approximation to the incompressible Navier-Stokes equations by incorporating a first-order relaxation and using the artificial compressibility method. With two relaxation parameters in the model, we rigorously prove the asymptotic limit of the system towards the incompressible Navier-Stokes equations as both parameters tend to zero. Notably, the convergence of the approximate pressure variable is achieved by the help of a linear ‘auxiliary’ system and energy-type error estimates of the differences between the two-parameter model and the Navier-Stokes equations.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics