Ji Zhang , Jing Xie , Zhiqiang Niu , Long You , Yanan Liu , Rui Guo , Guigui Yang , Ziliang He , Ting Shen , Honggang Wang , Qi Yan , Weicheng Hu
{"title":"Ginsenoside Rg2, a principal effective ingredient of Panax ginseng, attenuates DSS-induced ulcerative colitis through NF-κB/NLRP3 pathway","authors":"Ji Zhang , Jing Xie , Zhiqiang Niu , Long You , Yanan Liu , Rui Guo , Guigui Yang , Ziliang He , Ting Shen , Honggang Wang , Qi Yan , Weicheng Hu","doi":"10.1016/j.jgr.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Ginsenoside Rg2 (G-Rg2), a major active compound of <em>Panax ginseng</em>, exhibits a wide range of pharmacological properties, including anticancer, antioxidant and neuroprotective effects. However, the mechanisms by which G-Rg2 mitigates ulcerative colitis (UC) have not been clearly elucidated.</div></div><div><h3>Aims</h3><div>In the present study, we aimed to elucidate the underlying mechanisms by which G-Rg2 mitigated UC.</div></div><div><h3>Methods</h3><div>In this study, we investigated the efficacy of G-Rg2 in ameliorating dextran sulfate sodium (DSS)-induced UC and its potential mechanisms using a DSS-induced UC mouse model and Lipopolysaccharides (LPS)/nigericin (Nig)-induced NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation on immortalized bone marrow-derived macrophages (iBMDMs).</div></div><div><h3>Results</h3><div>Oral administration of G-Rg2 at doses of 10 and 20 mg/kg significantly mitigated weight loss, normalized food and water intake, and improved colon histopathology in DSS-induced UC mice. G-Rg2 also restored mRNA expression levels of occludin, claudin-3, zona occluden (ZO)-1 and mucin 2, thereby enhancing intestinal barrier integrity. G-Rg2 significantly suppressed the nuclear translocation of p65, the subunit of nuclear factor kappa-B (NF-κB), as well as downregulated NLRP3, cleaved IL-1β and caspase1 p20 expression induced by LPS/Nig in iBMDMs.</div></div><div><h3>Conclusion</h3><div>G-Rg2 effectively reduced colon inflammation in DSS-induced UC mice and diminishes inflammatory responses under LPS/Nig conditions by regulating NF-κB/NLRP3 pathway, thereby inhibiting NLRP3 inflammasome activation, which may serve as a potent therapeutic agent for UC.</div></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"49 3","pages":"Pages 282-293"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226845325000223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Ginsenoside Rg2 (G-Rg2), a major active compound of Panax ginseng, exhibits a wide range of pharmacological properties, including anticancer, antioxidant and neuroprotective effects. However, the mechanisms by which G-Rg2 mitigates ulcerative colitis (UC) have not been clearly elucidated.
Aims
In the present study, we aimed to elucidate the underlying mechanisms by which G-Rg2 mitigated UC.
Methods
In this study, we investigated the efficacy of G-Rg2 in ameliorating dextran sulfate sodium (DSS)-induced UC and its potential mechanisms using a DSS-induced UC mouse model and Lipopolysaccharides (LPS)/nigericin (Nig)-induced NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation on immortalized bone marrow-derived macrophages (iBMDMs).
Results
Oral administration of G-Rg2 at doses of 10 and 20 mg/kg significantly mitigated weight loss, normalized food and water intake, and improved colon histopathology in DSS-induced UC mice. G-Rg2 also restored mRNA expression levels of occludin, claudin-3, zona occluden (ZO)-1 and mucin 2, thereby enhancing intestinal barrier integrity. G-Rg2 significantly suppressed the nuclear translocation of p65, the subunit of nuclear factor kappa-B (NF-κB), as well as downregulated NLRP3, cleaved IL-1β and caspase1 p20 expression induced by LPS/Nig in iBMDMs.
Conclusion
G-Rg2 effectively reduced colon inflammation in DSS-induced UC mice and diminishes inflammatory responses under LPS/Nig conditions by regulating NF-κB/NLRP3 pathway, thereby inhibiting NLRP3 inflammasome activation, which may serve as a potent therapeutic agent for UC.
期刊介绍:
Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research.
JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports.
JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.