SSA-classifier based screening study for Alzheimer’s disease

IF 4.3 2区 化学 Q1 SPECTROSCOPY
Zihao Qi , Zhigang Li , Peng Shan , Qiaoyun Wang , Weishang Sun
{"title":"SSA-classifier based screening study for Alzheimer’s disease","authors":"Zihao Qi ,&nbsp;Zhigang Li ,&nbsp;Peng Shan ,&nbsp;Qiaoyun Wang ,&nbsp;Weishang Sun","doi":"10.1016/j.saa.2025.126115","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s is a disease (AD) that affects 10 % of individuals aged ≥ 65, is the most prevalent neurodegenerative disorder. We propose a diagnostic framework integrating plasma attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy with machine learning for AD screening. Four classifiers (SVM, Logistic Regression, XGBoost, LDA) were optimized using a modified Sparrow Search Algorithm (GSSA), benchmarked against its standard version (SSA) and Bayesian methods. GSSA-optimized classifiers demonstrated superior performance, with GSSA-XGBoost achieving peak metrics: 88.51 % accuracy (+2.30 % vs SSA-XGBoost), 95.35 % sensitivity, and 81.82 % specificity. Comparative test-set results revealed consistent improvements: SSA-optimized models attained 83.91 % (SVM), 77.01 % (Logistic), 86.21 % (XGBoost), and 79.31 % (LDA) accuracy, and Bayesian counterparts achieved 85.06 %, 80.46 %, 85.06 %, and 79.31 %,while GSSA-optimized models achieved 86.21 %,80.46 %,88.51 %,80.46 %,respectively. Moreover, GSSA further enhanced sensitivities to 97.67 % (SVM/LDA) and specificities to 81.82 % (XGBoost), outperforming both SSA and Bayesian approaches. This ATR-FTIR/GSSA-machine learning synergy shows significant potential as a minimally invasive AD screening tool, with XGBoost delivering optimal diagnostic balance. Our methodology advances spectroscopic biomarker discovery while demonstrating algorithmic optimization efficacy.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"339 ","pages":"Article 126115"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525004214","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s is a disease (AD) that affects 10 % of individuals aged ≥ 65, is the most prevalent neurodegenerative disorder. We propose a diagnostic framework integrating plasma attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy with machine learning for AD screening. Four classifiers (SVM, Logistic Regression, XGBoost, LDA) were optimized using a modified Sparrow Search Algorithm (GSSA), benchmarked against its standard version (SSA) and Bayesian methods. GSSA-optimized classifiers demonstrated superior performance, with GSSA-XGBoost achieving peak metrics: 88.51 % accuracy (+2.30 % vs SSA-XGBoost), 95.35 % sensitivity, and 81.82 % specificity. Comparative test-set results revealed consistent improvements: SSA-optimized models attained 83.91 % (SVM), 77.01 % (Logistic), 86.21 % (XGBoost), and 79.31 % (LDA) accuracy, and Bayesian counterparts achieved 85.06 %, 80.46 %, 85.06 %, and 79.31 %,while GSSA-optimized models achieved 86.21 %,80.46 %,88.51 %,80.46 %,respectively. Moreover, GSSA further enhanced sensitivities to 97.67 % (SVM/LDA) and specificities to 81.82 % (XGBoost), outperforming both SSA and Bayesian approaches. This ATR-FTIR/GSSA-machine learning synergy shows significant potential as a minimally invasive AD screening tool, with XGBoost delivering optimal diagnostic balance. Our methodology advances spectroscopic biomarker discovery while demonstrating algorithmic optimization efficacy.

Abstract Image

基于ssa分类器的阿尔茨海默病筛查研究
阿尔茨海默病是一种疾病(AD),影响10%的≥65岁的个体,是最普遍的神经退行性疾病。我们提出了一个将等离子体衰减全反射傅立叶变换红外(ATR-FTIR)光谱与机器学习相结合的诊断框架,用于AD筛查。使用改进的麻雀搜索算法(GSSA)对4个分类器(SVM、Logistic Regression、XGBoost、LDA)进行了优化,并对其标准版本(SSA)和贝叶斯方法进行了基准测试。gssa优化的分类器表现出优异的性能,GSSA-XGBoost达到峰值指标:准确率为88.51%(比SSA-XGBoost高2.30%),灵敏度为95.35%,特异性为81.82%。对比测试集结果显示了一致的改进:ssa优化模型的准确率分别为83.91% (SVM)、77.01% (Logistic)、86.21% (XGBoost)和79.31% (LDA),贝叶斯模型的准确率分别为85.06%、80.46%、85.06%和79.31%,而gssa优化模型的准确率分别为86.21%、80.46%、88.51%、80.46%。此外,GSSA进一步将灵敏度提高到97.67% (SVM/LDA),特异性提高到81.82% (XGBoost),优于SSA和贝叶斯方法。这种ATR-FTIR/ gssa -机器学习协同作用显示出作为微创AD筛查工具的巨大潜力,XGBoost提供了最佳的诊断平衡。我们的方法推进了光谱生物标志物的发现,同时展示了算法优化的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信