On some inequalities for the two-parameter Mittag-Leffler function in the complex plane

IF 1.2 3区 数学 Q1 MATHEMATICS
Roberto Garrappa , Stefan Gerhold , Marina Popolizio , Thomas Simon
{"title":"On some inequalities for the two-parameter Mittag-Leffler function in the complex plane","authors":"Roberto Garrappa ,&nbsp;Stefan Gerhold ,&nbsp;Marina Popolizio ,&nbsp;Thomas Simon","doi":"10.1016/j.jmaa.2025.129588","DOIUrl":null,"url":null,"abstract":"<div><div>For the two-parameter Mittag-Leffler function <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> with <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>≥</mo><mn>0</mn></math></span>, we consider the question whether <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span> are comparable on the whole complex plane. We show that the inequality <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≤</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span> holds globally if and only if <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>−</mo><mi>x</mi><mo>)</mo></math></span> is completely monotone on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. For <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> we prove that the complete monotonicity of <span><math><mn>1</mn><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is necessary for the global inequality <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≥</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span>, and also sufficient for <span><math><mi>α</mi><mo>=</mo><mn>1</mn></math></span>. For <span><math><mi>α</mi><mo>≥</mo><mn>2</mn></math></span> we show that the absence of non-real zeros for <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> is sufficient for the global inequality <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≥</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span>, and also necessary for <span><math><mi>α</mi><mo>=</mo><mn>2</mn></math></span>. All these results have an explicit description in terms of the values of the parameters <span><math><mi>α</mi><mo>,</mo><mi>β</mi></math></span>. Along the way, several inequalities for <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> on the half-plane <span><math><mo>{</mo><mo>ℜ</mo><mi>z</mi><mo>≥</mo><mn>0</mn><mo>}</mo></math></span> are established, and a characterization of its log-convexity and log-concavity on the positive half-line is obtained.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129588"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003695","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For the two-parameter Mittag-Leffler function Eα,β with α>0 and β0, we consider the question whether |Eα,β(z)| and Eα,β(z) are comparable on the whole complex plane. We show that the inequality |Eα,β(z)|Eα,β(z) holds globally if and only if Eα,β(x) is completely monotone on (0,). For α[1,2) we prove that the complete monotonicity of 1/Eα,β(x) on (0,) is necessary for the global inequality |Eα,β(z)|Eα,β(z), and also sufficient for α=1. For α2 we show that the absence of non-real zeros for Eα,β is sufficient for the global inequality |Eα,β(z)|Eα,β(z), and also necessary for α=2. All these results have an explicit description in terms of the values of the parameters α,β. Along the way, several inequalities for Eα,β on the half-plane {z0} are established, and a characterization of its log-convexity and log-concavity on the positive half-line is obtained.
复平面上双参数Mittag-Leffler函数的若干不等式
对于α>;0和β≥0的双参数Mittag-Leffler函数Eα,β,我们考虑了|Eα,β(z)|和Eα,β(z)在整个复平面上是否具有可比性的问题。证明了不等式|Eα,β(z)|≤Eα,β(z)当且仅当Eα,β(−x)在(0,∞)上完全单调时全局成立。对于α∈[1,2],证明了1/Eα,β(x)在(0,∞)上的完全单调性对于全局不等式|Eα,β(z)|≥Eα,β(z)是必要的,对于α=1也是充分的。对于α≥2,我们证明了Eα,β的非实零的不存在对于全局不等式|Eα,β(z)|≥Eα,β(rz)是充分的,对于α=2也是必要的。所有这些结果都可以用参数α,β的值来明确描述。在此过程中,建立了Eα,β在半平面{ez≥0}上的若干不等式,并得到了其在正半线上的对数凸性和对数凹性的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信