Quasi-uniform unconditional superconvergent error estimates of FEMs for the time-dependent singularly perturbed Bi-wave problem modeling d-wave superconductors

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yanmi Wu , Dongyang Shi
{"title":"Quasi-uniform unconditional superconvergent error estimates of FEMs for the time-dependent singularly perturbed Bi-wave problem modeling d-wave superconductors","authors":"Yanmi Wu ,&nbsp;Dongyang Shi","doi":"10.1016/j.camwa.2025.04.018","DOIUrl":null,"url":null,"abstract":"<div><div>For the fourth order time-dependent singularly perturbed Bi-wave equation modeling <em>d</em>-wave superconductors, the implicit Backward Euler (BE) and Crank-Nicolson (CN) schemes of Galerkin finite element method (FEM) are studied by Bonner-Fox-Shmite element. Then the quasi-uniform and unconditional superconvergent error estimates of orders <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> (<em>h</em>, the spatial parameter, and <em>τ</em>, the time step) in the energy norm are derived respectively for the above schemes, which are independent of the negative powers of the perturbation parameter appearing in the model. Finally, some numerical results are provided to verify the theoretical analysis.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"191 ","pages":"Pages 24-35"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001646","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For the fourth order time-dependent singularly perturbed Bi-wave equation modeling d-wave superconductors, the implicit Backward Euler (BE) and Crank-Nicolson (CN) schemes of Galerkin finite element method (FEM) are studied by Bonner-Fox-Shmite element. Then the quasi-uniform and unconditional superconvergent error estimates of orders O(h3+τ) and O(h3+τ2) (h, the spatial parameter, and τ, the time step) in the energy norm are derived respectively for the above schemes, which are independent of the negative powers of the perturbation parameter appearing in the model. Finally, some numerical results are provided to verify the theoretical analysis.
d波超导体时域奇摄动双波问题fem的准均匀无条件超收敛误差估计
针对四阶时变奇摄动双波方程模拟d波超导体,采用Bonner-Fox-Shmite单元研究了Galerkin有限元法的隐式后向欧拉(BE)和Crank-Nicolson (CN)格式。然后分别导出了与模型中出现的扰动参数负幂无关的能量范数O(h3+τ)阶和O(h3+τ)阶(h为空间参数,τ为时间步长)阶的准一致和无条件超收敛误差估计。最后给出了一些数值结果来验证理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信