An analysis of non-selfadjoint first-order differential operators with non-local point interactions

IF 1.2 3区 数学 Q1 MATHEMATICS
Christoph Fischbacher, Danie Paraiso, Chloe Povey-Rowe, Brady Zimmerman
{"title":"An analysis of non-selfadjoint first-order differential operators with non-local point interactions","authors":"Christoph Fischbacher,&nbsp;Danie Paraiso,&nbsp;Chloe Povey-Rowe,&nbsp;Brady Zimmerman","doi":"10.1016/j.jmaa.2025.129590","DOIUrl":null,"url":null,"abstract":"<div><div>We study the spectra of non-selfadjoint first-order operators on the interval with non-local point interactions, formally given by <span><math><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>V</mi><mo>+</mo><mi>k</mi><mo>〈</mo><mi>δ</mi><mo>,</mo><mo>⋅</mo><mo>〉</mo></math></span>. We give precise estimates on the location of the eigenvalues on the complex plane and prove that the root vectors of these operators form Riesz bases of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo>)</mo></math></span>. Under the additional assumption that the operator is maximally dissipative, we prove that it can have at most one real eigenvalue, and given any <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span>, we explicitly construct the unique operator realization such that <em>λ</em> is in its spectrum. We also investigate the time-evolution generated by these maximally dissipative operators.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129590"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003713","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the spectra of non-selfadjoint first-order operators on the interval with non-local point interactions, formally given by ix+V+kδ,. We give precise estimates on the location of the eigenvalues on the complex plane and prove that the root vectors of these operators form Riesz bases of L2(0,2π). Under the additional assumption that the operator is maximally dissipative, we prove that it can have at most one real eigenvalue, and given any λR, we explicitly construct the unique operator realization such that λ is in its spectrum. We also investigate the time-evolution generated by these maximally dissipative operators.
具有非局部点相互作用的非自伴随一阶微分算子的分析
我们研究了具有非局部点相互作用的区间上的非自伴随一阶算子的谱,其形式为i∂x+V+k < δ,⋅>。我们给出了复平面上特征值位置的精确估计,并证明了这些算子的根向量构成了L2(0,2π)的Riesz基。在算子极大耗散的附加假设下,我们证明了算子最多有一个实特征值,并且给定任意λ∈R,我们显式构造了λ在其谱内的唯一算子实现。我们还研究了这些最大耗散算子产生的时间演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信