Duality for neural networks through Reproducing Kernel Banach Spaces

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Len Spek , Tjeerd Jan Heeringa , Felix Schwenninger , Christoph Brune
{"title":"Duality for neural networks through Reproducing Kernel Banach Spaces","authors":"Len Spek ,&nbsp;Tjeerd Jan Heeringa ,&nbsp;Felix Schwenninger ,&nbsp;Christoph Brune","doi":"10.1016/j.acha.2025.101765","DOIUrl":null,"url":null,"abstract":"<div><div>Reproducing Kernel Hilbert spaces (RKHS) have been a very successful tool in various areas of machine learning. Recently, Barron spaces have been used to prove bounds on the generalisation error for neural networks. Unfortunately, Barron spaces cannot be understood in terms of RKHS due to the strong nonlinear coupling of the weights. This can be solved by using the more general Reproducing Kernel Banach spaces (RKBS). We show that these Barron spaces belong to a class of integral RKBS. This class can also be understood as an infinite union of RKHS spaces. Furthermore, we show that the dual space of such RKBSs, is again an RKBS where the roles of the data and parameters are interchanged, forming an adjoint pair of RKBSs including a reproducing kernel. This allows us to construct the saddle point problem for neural networks, which can be used in the whole field of primal-dual optimisation.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"78 ","pages":"Article 101765"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000193","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Reproducing Kernel Hilbert spaces (RKHS) have been a very successful tool in various areas of machine learning. Recently, Barron spaces have been used to prove bounds on the generalisation error for neural networks. Unfortunately, Barron spaces cannot be understood in terms of RKHS due to the strong nonlinear coupling of the weights. This can be solved by using the more general Reproducing Kernel Banach spaces (RKBS). We show that these Barron spaces belong to a class of integral RKBS. This class can also be understood as an infinite union of RKHS spaces. Furthermore, we show that the dual space of such RKBSs, is again an RKBS where the roles of the data and parameters are interchanged, forming an adjoint pair of RKBSs including a reproducing kernel. This allows us to construct the saddle point problem for neural networks, which can be used in the whole field of primal-dual optimisation.
利用核Banach空间再现神经网络的对偶性
再现核希尔伯特空间(RKHS)在机器学习的各个领域都是一个非常成功的工具。近年来,巴伦空间被用来证明神经网络泛化误差的界。不幸的是,由于权重的强非线性耦合,不能用RKHS来理解巴伦空间。这可以通过使用更通用的rereproduction Kernel Banach spaces (RKBS)来解决。我们证明了这些Barron空间属于一类积分RKBS。该类也可以理解为RKHS空间的无限并。此外,我们证明了这样的RKBS的对偶空间再次是一个RKBS,其中数据和参数的角色是互换的,形成了一个包含再现核的RKBS的伴随对。这允许我们构造神经网络的鞍点问题,它可以用于整个原始对偶优化领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信