Reverse Faber-Krahn and Szegő-Weinberger type inequalities for annular domains under Robin-Neumann boundary conditions

IF 2.4 2区 数学 Q1 MATHEMATICS
T.V. Anoop , Vladimir Bobkov , Pavel Drábek
{"title":"Reverse Faber-Krahn and Szegő-Weinberger type inequalities for annular domains under Robin-Neumann boundary conditions","authors":"T.V. Anoop ,&nbsp;Vladimir Bobkov ,&nbsp;Pavel Drábek","doi":"10.1016/j.jde.2025.113354","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> be the <em>k</em>-th eigenvalue of the Laplace operator in a bounded domain Ω of the form <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mtext>out</mtext></mrow></msub><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow><mo>‾</mo></mover></math></span> under the Neumann boundary condition on <span><math><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mtext>out</mtext></mrow></msub></math></span> and the Robin boundary condition with parameter <span><math><mi>h</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>+</mo><mo>∞</mo><mo>]</mo></math></span> on the sphere <span><math><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> of radius <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> centered at the origin, the limiting case <span><math><mi>h</mi><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> being understood as the Dirichlet boundary condition on <span><math><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>. In the case <span><math><mi>h</mi><mo>&gt;</mo><mn>0</mn></math></span>, it is known that the first eigenvalue <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> does not exceed <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow><mo>‾</mo></mover><mo>)</mo></math></span>, where <span><math><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> is chosen such that <span><math><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow><mo>‾</mo></mover><mo>|</mo></math></span>, which can be regarded as a reverse Faber-Krahn type inequality. We establish this result for any <span><math><mi>h</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>+</mo><mo>∞</mo><mo>]</mo></math></span>. Moreover, we provide related estimates for higher eigenvalues under additional geometric assumptions on Ω, which can be seen as Szegő-Weinberger type inequalities. A few counterexamples to the obtained inequalities for domains violating imposed geometric assumptions are given. As auxiliary information, we investigate shapes of eigenfunctions associated with several eigenvalues <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow><mo>‾</mo></mover><mo>)</mo></math></span> and show that they are nonradial at least for all positive and all sufficiently negative <em>h</em> when <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>}</mo></math></span>. At the same time, we give numerical evidence that, in the planar case <span><math><mi>N</mi><mo>=</mo><mn>2</mn></math></span>, already <em>second</em> eigenfunctions can be radial for some <span><math><mi>h</mi><mo>&lt;</mo><mn>0</mn></math></span>. The latter fact provides a simple counterexample to the Payne nodal line conjecture in the case of the mixed boundary conditions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"437 ","pages":"Article 113354"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500381X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let τk(Ω) be the k-th eigenvalue of the Laplace operator in a bounded domain Ω of the form ΩoutBα under the Neumann boundary condition on Ωout and the Robin boundary condition with parameter h(,+] on the sphere Bα of radius α>0 centered at the origin, the limiting case h=+ being understood as the Dirichlet boundary condition on Bα. In the case h>0, it is known that the first eigenvalue τ1(Ω) does not exceed τ1(BβBα), where β>0 is chosen such that |Ω|=|BβBα|, which can be regarded as a reverse Faber-Krahn type inequality. We establish this result for any h(,+]. Moreover, we provide related estimates for higher eigenvalues under additional geometric assumptions on Ω, which can be seen as Szegő-Weinberger type inequalities. A few counterexamples to the obtained inequalities for domains violating imposed geometric assumptions are given. As auxiliary information, we investigate shapes of eigenfunctions associated with several eigenvalues τi(BβBα) and show that they are nonradial at least for all positive and all sufficiently negative h when i{2,,N+2}. At the same time, we give numerical evidence that, in the planar case N=2, already second eigenfunctions can be radial for some h<0. The latter fact provides a simple counterexample to the Payne nodal line conjecture in the case of the mixed boundary conditions.
Robin-Neumann边界条件下环形区域的反向Faber-Krahn和Szegő-Weinberger型不等式
设τk(Ω)是在以原点为中心的半径为α>;0的球∂Bα上,在∂Ωout上的Neumann边界条件和参数h∈(−∞,+∞)的Robin边界条件下,形式为Ωout∈Bα的有界域Ω上的拉普拉斯算子的第k个特征值,极限情况h=+∞被理解为∂Bα上的Dirichlet边界条件。在h>;0的情况下,已知第一特征值τ1(Ω)不超过τ1(Bβ β β α),其中选择β>;0使得|Ω|=|Bβ β β α |,这可以看作是一个反向Faber-Krahn型不等式。我们对任意h∈(−∞,+∞)建立了这个结果。此外,我们在Ω的附加几何假设下提供了更高特征值的相关估计,这可以看作是Szegő-Weinberger型不等式。给出了几个反例,证明了所得到的不等式在违反给定几何假设的情况下是正确的。作为辅助信息,我们研究了与几个特征值τi(Bβ β Bα)相关的特征函数的形状,并证明当i∈{2,…,N+2}时,它们是非径向的,至少对于所有正的和所有充分负的h。同时,我们给出了数值证明,在平面N=2的情况下,已有的第二特征函数在某h<;0下可以是径向的。后一事实为混合边界条件下的Payne节点线猜想提供了一个简单的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信