{"title":"Reverse Faber-Krahn and Szegő-Weinberger type inequalities for annular domains under Robin-Neumann boundary conditions","authors":"T.V. Anoop , Vladimir Bobkov , Pavel Drábek","doi":"10.1016/j.jde.2025.113354","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> be the <em>k</em>-th eigenvalue of the Laplace operator in a bounded domain Ω of the form <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mtext>out</mtext></mrow></msub><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow><mo>‾</mo></mover></math></span> under the Neumann boundary condition on <span><math><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mtext>out</mtext></mrow></msub></math></span> and the Robin boundary condition with parameter <span><math><mi>h</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>+</mo><mo>∞</mo><mo>]</mo></math></span> on the sphere <span><math><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> of radius <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> centered at the origin, the limiting case <span><math><mi>h</mi><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> being understood as the Dirichlet boundary condition on <span><math><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>. In the case <span><math><mi>h</mi><mo>></mo><mn>0</mn></math></span>, it is known that the first eigenvalue <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> does not exceed <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow><mo>‾</mo></mover><mo>)</mo></math></span>, where <span><math><mi>β</mi><mo>></mo><mn>0</mn></math></span> is chosen such that <span><math><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow><mo>‾</mo></mover><mo>|</mo></math></span>, which can be regarded as a reverse Faber-Krahn type inequality. We establish this result for any <span><math><mi>h</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>+</mo><mo>∞</mo><mo>]</mo></math></span>. Moreover, we provide related estimates for higher eigenvalues under additional geometric assumptions on Ω, which can be seen as Szegő-Weinberger type inequalities. A few counterexamples to the obtained inequalities for domains violating imposed geometric assumptions are given. As auxiliary information, we investigate shapes of eigenfunctions associated with several eigenvalues <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow><mo>‾</mo></mover><mo>)</mo></math></span> and show that they are nonradial at least for all positive and all sufficiently negative <em>h</em> when <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>}</mo></math></span>. At the same time, we give numerical evidence that, in the planar case <span><math><mi>N</mi><mo>=</mo><mn>2</mn></math></span>, already <em>second</em> eigenfunctions can be radial for some <span><math><mi>h</mi><mo><</mo><mn>0</mn></math></span>. The latter fact provides a simple counterexample to the Payne nodal line conjecture in the case of the mixed boundary conditions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"437 ","pages":"Article 113354"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500381X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the k-th eigenvalue of the Laplace operator in a bounded domain Ω of the form under the Neumann boundary condition on and the Robin boundary condition with parameter on the sphere of radius centered at the origin, the limiting case being understood as the Dirichlet boundary condition on . In the case , it is known that the first eigenvalue does not exceed , where is chosen such that , which can be regarded as a reverse Faber-Krahn type inequality. We establish this result for any . Moreover, we provide related estimates for higher eigenvalues under additional geometric assumptions on Ω, which can be seen as Szegő-Weinberger type inequalities. A few counterexamples to the obtained inequalities for domains violating imposed geometric assumptions are given. As auxiliary information, we investigate shapes of eigenfunctions associated with several eigenvalues and show that they are nonradial at least for all positive and all sufficiently negative h when . At the same time, we give numerical evidence that, in the planar case , already second eigenfunctions can be radial for some . The latter fact provides a simple counterexample to the Payne nodal line conjecture in the case of the mixed boundary conditions.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics