Evaluating vaccination and quarantine for measles intervention strategy in Jakarta, Indonesia through mathematical modeling

Q1 Mathematics
Dipo Aldila , Abdullah Hasan Hassan , Chidozie Williams Chukwu , Stephane Yanick Tchoumi , Muhamad Hifzhudin Noor Aziz
{"title":"Evaluating vaccination and quarantine for measles intervention strategy in Jakarta, Indonesia through mathematical modeling","authors":"Dipo Aldila ,&nbsp;Abdullah Hasan Hassan ,&nbsp;Chidozie Williams Chukwu ,&nbsp;Stephane Yanick Tchoumi ,&nbsp;Muhamad Hifzhudin Noor Aziz","doi":"10.1016/j.padiff.2025.101191","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces a system of seven-dimensional nonlinear differential equations to analyze the influence of vaccination strategies on the spread of measles in Jakarta, using weekly incidence data for parameter estimation. Our dynamical analysis begins by determining the existence and stability of equilibrium states and calculating the basic reproduction number, denoted by <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The analysis indicates that the disease-free equilibrium is globally asymptotically stable if <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>. Conversely, the endemic equilibrium always persists and remains stable if <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Next, we conduct a global sensitivity analysis using the Partial Rank Correlation Coefficient (PRCC) method integrated with Latin Hypercube Sampling (LHS). The results indicate that the initial-dose vaccination intervention plays the most critical role in reducing the reproduction number, highlighting its significant potential as a measles control strategy. Additionally, we extend the model into an optimal control problem framework to identify the most effective strategy for preventing measles spread while minimizing intervention costs. This control optimization is formulated using Pontryagin’s Maximum Principle and solved numerically through the forward–backward sweep method. The cost-effectiveness analysis indicates that a combination of vaccination and quarantine is the most effective strategy compared to other possible control measures.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101191"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a system of seven-dimensional nonlinear differential equations to analyze the influence of vaccination strategies on the spread of measles in Jakarta, using weekly incidence data for parameter estimation. Our dynamical analysis begins by determining the existence and stability of equilibrium states and calculating the basic reproduction number, denoted by R0. The analysis indicates that the disease-free equilibrium is globally asymptotically stable if R0<1. Conversely, the endemic equilibrium always persists and remains stable if R0>1. Next, we conduct a global sensitivity analysis using the Partial Rank Correlation Coefficient (PRCC) method integrated with Latin Hypercube Sampling (LHS). The results indicate that the initial-dose vaccination intervention plays the most critical role in reducing the reproduction number, highlighting its significant potential as a measles control strategy. Additionally, we extend the model into an optimal control problem framework to identify the most effective strategy for preventing measles spread while minimizing intervention costs. This control optimization is formulated using Pontryagin’s Maximum Principle and solved numerically through the forward–backward sweep method. The cost-effectiveness analysis indicates that a combination of vaccination and quarantine is the most effective strategy compared to other possible control measures.
通过数学模型评估印度尼西亚雅加达麻疹疫苗接种和检疫干预策略
本文引入一个七维非线性微分方程系统,利用每周发病率数据进行参数估计,分析疫苗接种策略对雅加达麻疹传播的影响。我们的动力学分析首先确定平衡状态的存在性和稳定性,并计算基本繁殖数,用R0表示。分析表明,当R0<;1时,无病平衡点是全局渐近稳定的。相反,如果R0>;1,则地方性均衡总是持续存在并保持稳定。接下来,我们使用偏秩相关系数(PRCC)方法结合拉丁超立方采样(LHS)进行全局敏感性分析。结果表明,初始剂量疫苗干预在减少繁殖数量方面发挥了最关键的作用,突出了其作为麻疹控制策略的巨大潜力。此外,我们将模型扩展为最优控制问题框架,以确定预防麻疹传播的最有效策略,同时最小化干预成本。该控制优化采用庞特里亚金极大值原理,并通过前后扫描法进行数值求解。成本效益分析表明,与其他可能的控制措施相比,疫苗接种和隔离相结合是最有效的战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信