Impulsive implicit fractional q-integrodifferential equations under Riemann–Liouville boundary conditions with stability results

Q1 Mathematics
Azam Fathipour , Mohammad Esmael Samei
{"title":"Impulsive implicit fractional q-integrodifferential equations under Riemann–Liouville boundary conditions with stability results","authors":"Azam Fathipour ,&nbsp;Mohammad Esmael Samei","doi":"10.1016/j.padiff.2025.101172","DOIUrl":null,"url":null,"abstract":"<div><div>We aim to analyze a novel class of impulsive implicit <span><math><mi>q</mi></math></span>-integrodifferential equations of fractional order involving a certain kind of boundary value problem with mixed Riemann–Liouville fractional <span><math><mi>q</mi></math></span>-integral boundary conditions. Base on the theorems of nonlinear analysis, we investigate the existence and uniqueness results for the given <span><math><mi>q</mi></math></span>-fractional equations. In addition to, the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias are examined. Finally, some illustrative examples guarantee our outcomes.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101172"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We aim to analyze a novel class of impulsive implicit q-integrodifferential equations of fractional order involving a certain kind of boundary value problem with mixed Riemann–Liouville fractional q-integral boundary conditions. Base on the theorems of nonlinear analysis, we investigate the existence and uniqueness results for the given q-fractional equations. In addition to, the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias are examined. Finally, some illustrative examples guarantee our outcomes.
Riemann-Liouville边界条件下具有稳定性结果的脉冲隐式分数阶q积分微分方程
研究一类具有混合Riemann-Liouville分数阶q积分边值问题的分数阶脉冲隐式q积分微分方程。基于非线性分析定理,研究了给定q分数阶方程的存在唯一性结果。此外,还考察了Ulam-Hyers和Ulam-Hyers - rassias的稳定性。最后,通过实例验证了本文的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信