A finite volume approach for general fully coupled anisotropic porous solid mechanics of fiber reinforcements in Liquid Composite Molding

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Sarah Schlegel, Florian Wittemann, Luise Kärger
{"title":"A finite volume approach for general fully coupled anisotropic porous solid mechanics of fiber reinforcements in Liquid Composite Molding","authors":"Sarah Schlegel,&nbsp;Florian Wittemann,&nbsp;Luise Kärger","doi":"10.1016/j.compositesb.2025.112448","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a finite volume method is developed to capture the interaction between the infiltrating resin and the deforming fiber reinforcement in liquid composite molding (LCM). The method consists of three parts: (1) the fluid flow through a porous medium, which depends on the fiber volume fraction (FVF) and the fiber orientation, (2) the solid mechanics of the porous fiber structure considering the general anisotropic material stiffness, which also depends on the FVF and the fiber orientation, and (3) an internal coupling approach to couple porous solid mechanics and fluid flow with an iterative scheme. An anisotropic model of porous solid mechanics is proposed and verified in a unidirectional case to capture fluid-induced deformations of the porous medium. In a second verification case, the stress state is verified in an open-hole tensile test against an analytical solution for different degrees of material anisotropy. Finally, the infiltration and compaction predictions of the model are validated against experimental data from the literature using a three-dimensional plate. In addition, the infiltration behavior with the anisotropic model is compared to the isotropic model to illustrate the advantage of the new approach.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"302 ","pages":"Article 112448"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135983682500349X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a finite volume method is developed to capture the interaction between the infiltrating resin and the deforming fiber reinforcement in liquid composite molding (LCM). The method consists of three parts: (1) the fluid flow through a porous medium, which depends on the fiber volume fraction (FVF) and the fiber orientation, (2) the solid mechanics of the porous fiber structure considering the general anisotropic material stiffness, which also depends on the FVF and the fiber orientation, and (3) an internal coupling approach to couple porous solid mechanics and fluid flow with an iterative scheme. An anisotropic model of porous solid mechanics is proposed and verified in a unidirectional case to capture fluid-induced deformations of the porous medium. In a second verification case, the stress state is verified in an open-hole tensile test against an analytical solution for different degrees of material anisotropy. Finally, the infiltration and compaction predictions of the model are validated against experimental data from the literature using a three-dimensional plate. In addition, the infiltration behavior with the anisotropic model is compared to the isotropic model to illustrate the advantage of the new approach.
液体复合材料成型中纤维增强材料全耦合各向异性多孔固体力学的有限体积法
在这项工作中,开发了一种有限体积法来捕捉液体复合成型(LCM)中浸润树脂与变形纤维增强物之间的相互作用。该方法由三部分组成:(1)流体在多孔介质中的流动,这取决于纤维体积分数(FVF)和纤维取向;(2)考虑一般各向异性材料刚度的多孔纤维结构的固体力学,这也取决于纤维体积分数和纤维取向;(3)采用迭代格式将多孔固体力学和流体流动耦合起来的内部耦合方法。提出了多孔介质力学的各向异性模型,并在单向情况下验证了该模型的正确性。在第二个验证案例中,应力状态在裸眼拉伸试验中根据不同程度的材料各向异性的解析解进行验证。最后,利用三维板对模型的入渗和压实预测进行了验证。此外,将各向异性模型的入渗行为与各向同性模型进行了比较,以说明新方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信