Effects of groove geometry around pin-fin perforation circumference on thermohydraulic behavior of pin-fin heat sinks under turbulent flow

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Athasit Wongcharoen , Jenn-Kun Kuo , Wei-Cheng Wang , Parinya Ackaradetruangsri , Naratip Sangsai , Pawat Jantasorn , Ukrit Thamma
{"title":"Effects of groove geometry around pin-fin perforation circumference on thermohydraulic behavior of pin-fin heat sinks under turbulent flow","authors":"Athasit Wongcharoen ,&nbsp;Jenn-Kun Kuo ,&nbsp;Wei-Cheng Wang ,&nbsp;Parinya Ackaradetruangsri ,&nbsp;Naratip Sangsai ,&nbsp;Pawat Jantasorn ,&nbsp;Ukrit Thamma","doi":"10.1016/j.csite.2025.106184","DOIUrl":null,"url":null,"abstract":"<div><div>The thermohydraulic performance of perforated pin-fin heat sinks (PPFHS) with different groove geometries around pin-fin perforation circumference is numerically investigated using ANSYS Fluent under turbulent flow conditions with Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>) ranging from 24,484 to 55,088. Four groove geometries—trapezoid, half-circle, rectangle, and triangle—are assessed for their effects on convective heat transfer efficiency, hydraulic resistance, and overall thermohydraulic performance. The groove sizes are designed to maintain a consistent air-solid interfacial surface area to total volume ratio across all configurations. The study finds that the trapezoid-grooved PPFHS exhibits the highest Nusselt number (<span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span>), achieving improvements of 11.8 %–20.9 % compared to the ungrooved PPFHS over the investigated <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> range. The half-circle, rectangle, and triangle grooves show <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> enhancements of 10.9–20.2 %, 10.9–20.1 %, and 9.87–18.6 %, respectively. Friction factor reductions range from 4.35 to 8.57 %, 4.22–7.71 %, 3.10–6.62 %, and 0.87–5.05 % for the trapezoid, half-circle, rectangle, and triangle grooves, respectively. The thermal performance factor (<span><math><mrow><mi>T</mi><mi>P</mi><mi>F</mi></mrow></math></span>) of the trapezoid-grooved PPFHS is the highest, with improvements of 13.5–24.5 % over the ungrooved design, followed by the half-circle (12.5–23.4 %), rectangle (12.1–22.9 %), and triangle (10.2–20.7 %) grooves. While <span><math><mrow><mi>T</mi><mi>P</mi><mi>F</mi></mrow></math></span> increases with <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, a diminishing rate of enhancement is observed at higher <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>. The superior performance of the trapezoid groove is attributed to its ability to promote the most efficient airflow through the perforations while maintaining the lowest perimeter-to-cross-sectional area ratio.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106184"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004447","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The thermohydraulic performance of perforated pin-fin heat sinks (PPFHS) with different groove geometries around pin-fin perforation circumference is numerically investigated using ANSYS Fluent under turbulent flow conditions with Reynolds numbers (Re) ranging from 24,484 to 55,088. Four groove geometries—trapezoid, half-circle, rectangle, and triangle—are assessed for their effects on convective heat transfer efficiency, hydraulic resistance, and overall thermohydraulic performance. The groove sizes are designed to maintain a consistent air-solid interfacial surface area to total volume ratio across all configurations. The study finds that the trapezoid-grooved PPFHS exhibits the highest Nusselt number (Nu), achieving improvements of 11.8 %–20.9 % compared to the ungrooved PPFHS over the investigated Re range. The half-circle, rectangle, and triangle grooves show Nu enhancements of 10.9–20.2 %, 10.9–20.1 %, and 9.87–18.6 %, respectively. Friction factor reductions range from 4.35 to 8.57 %, 4.22–7.71 %, 3.10–6.62 %, and 0.87–5.05 % for the trapezoid, half-circle, rectangle, and triangle grooves, respectively. The thermal performance factor (TPF) of the trapezoid-grooved PPFHS is the highest, with improvements of 13.5–24.5 % over the ungrooved design, followed by the half-circle (12.5–23.4 %), rectangle (12.1–22.9 %), and triangle (10.2–20.7 %) grooves. While TPF increases with Re, a diminishing rate of enhancement is observed at higher Re. The superior performance of the trapezoid groove is attributed to its ability to promote the most efficient airflow through the perforations while maintaining the lowest perimeter-to-cross-sectional area ratio.
紊流条件下翅片孔周沟槽几何形状对翅片散热器热水力特性的影响
采用ANSYS Fluent软件,对不同凹槽几何形状的带孔针翅散热器(PPFHS)在雷诺数(Re)为24,484 ~ 55,088的紊流条件下的热液性能进行了数值研究。四沟槽几何形状-梯形,半圆,矩形和三角形-评估了它们对对流传热效率,水力阻力和整体热工性能的影响。凹槽尺寸的设计是为了在所有配置中保持一致的空气-固体界面表面积与总体积比。研究发现,在Re范围内,梯形沟槽PPFHS的努塞尔数(Nu)最高,比未沟槽PPFHS提高了11.8% ~ 20.9%。半圆槽、矩形槽和三角形槽的Nu增强幅度分别为10.9 ~ 20.2%、10.9 ~ 20.1%和9.87 ~ 18.6%。梯形槽、半圆槽、矩形槽和三角形槽的摩擦系数降低幅度分别为4.35 ~ 8.57%、4.22 ~ 7.71%、3.10 ~ 6.62%和0.87 ~ 5.05%。梯形沟槽的热性能因子(TPF)最高,比无沟槽设计提高13.5 ~ 24.5%,其次是半圆沟槽(12.5 ~ 23.4%)、矩形沟槽(12.1 ~ 22.9%)和三角形沟槽(10.2 ~ 20.7%)。虽然TPF随着Re的增加而增加,但在较高的Re下,增强率会降低。梯形槽的优越性能归功于它能够促进最有效的气流通过射孔,同时保持最低的周长与横截面积比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信