{"title":"Edgeworth expansion for semi-hard triplet loss","authors":"Masanari Kimura","doi":"10.1016/j.spl.2025.110441","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a higher-order asymptotic analysis for the semi-hard triplet loss using the Edgeworth expansion. It is known that this loss function enforces that embeddings of similar samples are close while those of dissimilar samples are separated by a specified margin. By refining the classical central limit theorem, our approach quantifies the impact of the margin parameter and the skewness of the underlying data distribution on the loss behavior. In particular, we derive explicit Edgeworth expansions that reveal first-order corrections in terms of the third cumulant, thereby characterizing non-Gaussian effects present in the distribution of distance differences between anchor-positive and anchor-negative pairs. Our findings provide detailed insight into the sensitivity of the semi-hard triplet loss to its parameters and offer guidance for choosing the margin to ensure training stability.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"224 ","pages":"Article 110441"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225000860","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a higher-order asymptotic analysis for the semi-hard triplet loss using the Edgeworth expansion. It is known that this loss function enforces that embeddings of similar samples are close while those of dissimilar samples are separated by a specified margin. By refining the classical central limit theorem, our approach quantifies the impact of the margin parameter and the skewness of the underlying data distribution on the loss behavior. In particular, we derive explicit Edgeworth expansions that reveal first-order corrections in terms of the third cumulant, thereby characterizing non-Gaussian effects present in the distribution of distance differences between anchor-positive and anchor-negative pairs. Our findings provide detailed insight into the sensitivity of the semi-hard triplet loss to its parameters and offer guidance for choosing the margin to ensure training stability.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.