Seyed Saeed Fazlhashemi , Mohammad E. Khodayar , Mostafa Sedighizadeh , Mahdi Khodayar
{"title":"Risk-averse operation of microgrids in distribution systems with price-responsive demands","authors":"Seyed Saeed Fazlhashemi , Mohammad E. Khodayar , Mostafa Sedighizadeh , Mahdi Khodayar","doi":"10.1016/j.ijepes.2025.110581","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a decentralized, risk-averse operational framework for interconnected, unbalanced microgrids and the distribution system. Distribution system operation is modeled as a risk-averse optimization problem using conditional value-at-risk measures to enhance robustness against uncertainties in price-responsive demand bids. Microgrid operations are structured as scenario-based robust optimization problems, capturing the worst-case scenarios for demand and solar PV generation. Non-convex energy management problems within the distribution system and microgrids are reformulated as convex optimization problems using the moment relaxation technique. A decentralized scheme addresses heterogeneous uncertainties in microgrids and the distribution system. The framework is applied to two case studies: a distribution system connected to two microgrids and a modified IEEE 123-bus distribution system connected to four microgrids. The risk-averse optimization solution is compared to that of a stochastic programming approach. For the IEEE 123-bus system, the results show that introducing risk aversion decreases social welfare by 44.63% compared to the risk-neutral solution but improves the conditional value-at-risk by 44.04%. Additionally, the impacts of dispatchable resources, including energy storage and distributed generation, on operation cost, phase balancing, and uncertainty control at the main feeder are examined. It is shown that incorporating a statistical distance metric to regulate power flow at the main feeder decreases social welfare by 6.48%.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"168 ","pages":"Article 110581"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001322","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a decentralized, risk-averse operational framework for interconnected, unbalanced microgrids and the distribution system. Distribution system operation is modeled as a risk-averse optimization problem using conditional value-at-risk measures to enhance robustness against uncertainties in price-responsive demand bids. Microgrid operations are structured as scenario-based robust optimization problems, capturing the worst-case scenarios for demand and solar PV generation. Non-convex energy management problems within the distribution system and microgrids are reformulated as convex optimization problems using the moment relaxation technique. A decentralized scheme addresses heterogeneous uncertainties in microgrids and the distribution system. The framework is applied to two case studies: a distribution system connected to two microgrids and a modified IEEE 123-bus distribution system connected to four microgrids. The risk-averse optimization solution is compared to that of a stochastic programming approach. For the IEEE 123-bus system, the results show that introducing risk aversion decreases social welfare by 44.63% compared to the risk-neutral solution but improves the conditional value-at-risk by 44.04%. Additionally, the impacts of dispatchable resources, including energy storage and distributed generation, on operation cost, phase balancing, and uncertainty control at the main feeder are examined. It is shown that incorporating a statistical distance metric to regulate power flow at the main feeder decreases social welfare by 6.48%.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.