Iron-carbon enhanced constructed wetland microbial fuel cells for tetracycline wastewater treatment: Efficacy, power generation, and the role of iron-carbon
Zhiyuan Du , Sai Bai , Jin Qian , Peng Zhan , Fengping Hu , Xiaoming Peng
{"title":"Iron-carbon enhanced constructed wetland microbial fuel cells for tetracycline wastewater treatment: Efficacy, power generation, and the role of iron-carbon","authors":"Zhiyuan Du , Sai Bai , Jin Qian , Peng Zhan , Fengping Hu , Xiaoming Peng","doi":"10.1016/j.biortech.2025.132578","DOIUrl":null,"url":null,"abstract":"<div><div>Tetracycline (TC) antibiotics wastewater is a serious threat to human health and environment. In this study, four groups of laboratory-scale constructed wetlands (CWs) with different configurations were constructed to evaluate the removal efficiency of iron-carbon (Ic) coupled constructed wetland microbial fuel cells (CW-MFC) system for different pollutants removal and bioelectricity production. The results showed that the addition of Ic significantly promoted the removal of contaminants. The maximum removal rates of COD, TN, NH<sub>4</sub><sup>+</sup>-N, and TP were 86.13 %, 81.60 %, 79.07 %, and 97.35 %, respectively. In particular, the removal rates of TC reached 100 %. 3D-EEM analysis further confirmed the role of Ic in promoting organic degradation. The Ic-CW-MFC system also showed superiority in power generation performance with peak power density of 7.90 mW/m<sup>2</sup> (internal resistance is 10 Ω), 88.07 % higher than the traditional CW-MFC, while the internal resistance was 68.21 % lower. Therefore, when Ic is used as the substrate of CW-MFC system, its decontamination and electricity generation performance is the best. Analysis of RDA was used to elucidate the relationship of four CWs, dominant strains and environmental factors (pH, ORP and DO). The performance of traditional CWs decreased significantly after TC addition (5–20 mg/L), but Ic-CW-MFC could effectively alleviate the inhibition effect caused by high-concentration TC wastewater. The working mechanism of Ic-CW-MFC in TC wastewater was further analyzed through typical cycle experiment and characterization. The results showed that Ic-CW-MFC is an efficient and economical wastewater treatment technology, which has great potential application value in the treatment of wastewater containing TC.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"430 ","pages":"Article 132578"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005449","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Tetracycline (TC) antibiotics wastewater is a serious threat to human health and environment. In this study, four groups of laboratory-scale constructed wetlands (CWs) with different configurations were constructed to evaluate the removal efficiency of iron-carbon (Ic) coupled constructed wetland microbial fuel cells (CW-MFC) system for different pollutants removal and bioelectricity production. The results showed that the addition of Ic significantly promoted the removal of contaminants. The maximum removal rates of COD, TN, NH4+-N, and TP were 86.13 %, 81.60 %, 79.07 %, and 97.35 %, respectively. In particular, the removal rates of TC reached 100 %. 3D-EEM analysis further confirmed the role of Ic in promoting organic degradation. The Ic-CW-MFC system also showed superiority in power generation performance with peak power density of 7.90 mW/m2 (internal resistance is 10 Ω), 88.07 % higher than the traditional CW-MFC, while the internal resistance was 68.21 % lower. Therefore, when Ic is used as the substrate of CW-MFC system, its decontamination and electricity generation performance is the best. Analysis of RDA was used to elucidate the relationship of four CWs, dominant strains and environmental factors (pH, ORP and DO). The performance of traditional CWs decreased significantly after TC addition (5–20 mg/L), but Ic-CW-MFC could effectively alleviate the inhibition effect caused by high-concentration TC wastewater. The working mechanism of Ic-CW-MFC in TC wastewater was further analyzed through typical cycle experiment and characterization. The results showed that Ic-CW-MFC is an efficient and economical wastewater treatment technology, which has great potential application value in the treatment of wastewater containing TC.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.