{"title":"Nonlinear seismic analysis of subway station − layered site under obliquely incident shear waves with arbitrary angles","authors":"Yongguang Wang , Mengtao Wu , Jun Yang","doi":"10.1016/j.tust.2025.106660","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately capturing the seismic response of underground structures subjected to obliquely incident seismic waves, particularly when the angle of incidence surpasses the critical value, remains a challenging task in earthquake engineering. To address this gap, this paper presents a three-dimensional (3D) nonlinear seismic analysis of subway stations embedded in a layered site, specifically in response to obliquely incident shear (SV) waves at arbitrary angles. An innovative procedure, termed the coupled dynamic stiffness matrix–finite element method (DSM-FEM), is introduced to enable seismic input by transforming responses induced by arbitrarily incoming SV waves into equivalent nodal loads. To accurately simulate wave propagation within the site, a viscous-spring artificial boundary is utilized, while a nonlinear generalized Masing model that incorporates modified damping is employed. Using the Daikai subway station as a benchmark, the research examines the effects of varying oblique incident angles on the structural response, taking into account dynamic soil-structure interaction. The results reveal that the maximum response, including peak deformation, internal forces, Mises stress, occurs when the incident angle approaches the critical value. Beyond this critical angle, the seismic response notably diminishes. Additionally, the influence of horizontal incident angles is found to be noticeable, leading to variations in deformation patterns and internal forces across different structural components. Specifically, it has been observed that the drift ratio, displacement, shear force, acceleration, and Mises stress exhibit a decreasing trend as the horizontal incident angles increase. These findings highlight the significance of considering non-vertical input ground motion in seismic analysis, and offer valuable insights for the structural design and safety evaluation of underground structures.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"163 ","pages":"Article 106660"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825002986","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately capturing the seismic response of underground structures subjected to obliquely incident seismic waves, particularly when the angle of incidence surpasses the critical value, remains a challenging task in earthquake engineering. To address this gap, this paper presents a three-dimensional (3D) nonlinear seismic analysis of subway stations embedded in a layered site, specifically in response to obliquely incident shear (SV) waves at arbitrary angles. An innovative procedure, termed the coupled dynamic stiffness matrix–finite element method (DSM-FEM), is introduced to enable seismic input by transforming responses induced by arbitrarily incoming SV waves into equivalent nodal loads. To accurately simulate wave propagation within the site, a viscous-spring artificial boundary is utilized, while a nonlinear generalized Masing model that incorporates modified damping is employed. Using the Daikai subway station as a benchmark, the research examines the effects of varying oblique incident angles on the structural response, taking into account dynamic soil-structure interaction. The results reveal that the maximum response, including peak deformation, internal forces, Mises stress, occurs when the incident angle approaches the critical value. Beyond this critical angle, the seismic response notably diminishes. Additionally, the influence of horizontal incident angles is found to be noticeable, leading to variations in deformation patterns and internal forces across different structural components. Specifically, it has been observed that the drift ratio, displacement, shear force, acceleration, and Mises stress exhibit a decreasing trend as the horizontal incident angles increase. These findings highlight the significance of considering non-vertical input ground motion in seismic analysis, and offer valuable insights for the structural design and safety evaluation of underground structures.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.