Lin Yuanjian , Abid A. Memon , Hou Enran , Mohamed R. Ali , Amsalu Fenta
{"title":"Performance analysis of a photovoltaic thermal system with ternary nanofluids cooling and dual phase change materials","authors":"Lin Yuanjian , Abid A. Memon , Hou Enran , Mohamed R. Ali , Amsalu Fenta","doi":"10.1016/j.csite.2025.106123","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic-thermal (PV/T) systems offer a sustainable solution for electricity generation and energy conservation in developing countries. However, high operating temperatures can significantly reduce their efficiency. This study investigates the thermal performance of a PV/T system incorporating a cooling flow channel to regulate temperature and enhance electrical output while utilizing excess heat for practical applications. The system comprises glass, polycrystalline silicon, an absorber, and a flow channel employing ternary and water-based nanofluids. Two phase change materials (PCMs), paraffin octadecane wax (C<sub>18</sub>H<sub>38</sub>) and sodium sulfate decahydrate (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O), are embedded in the channel to enhance thermal regulation. Numerical simulations are conducted using COMSOL Multiphysics 6.0, employing a conjugate heat transfer approach to solve the continuity, momentum, and energy equations. The study considers steady, laminar, and Newtonian flow conditions and evaluates system performance under varying heat flux levels. Key parameters include Reynolds number (50–200), nanoparticle volume fraction (1 %–15 %), latent heat of melting (240–260 J/g), and ambient temperatures in Sukkur, Pakistan. Results indicate that paraffin wax undergoes phase transitions more rapidly than sodium sulfate decahydrate, whereas Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O exhibits greater temperature variations due to higher inlet temperatures. Optimal thermal efficiency of 75.91 % is achieved at Re = 50, T<sub>amb</sub> = 45 °C, and <span><math><mrow><mi>ϕ</mi></mrow></math></span> = 10 %.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106123"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25003831","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic-thermal (PV/T) systems offer a sustainable solution for electricity generation and energy conservation in developing countries. However, high operating temperatures can significantly reduce their efficiency. This study investigates the thermal performance of a PV/T system incorporating a cooling flow channel to regulate temperature and enhance electrical output while utilizing excess heat for practical applications. The system comprises glass, polycrystalline silicon, an absorber, and a flow channel employing ternary and water-based nanofluids. Two phase change materials (PCMs), paraffin octadecane wax (C18H38) and sodium sulfate decahydrate (Na2SO4·10H2O), are embedded in the channel to enhance thermal regulation. Numerical simulations are conducted using COMSOL Multiphysics 6.0, employing a conjugate heat transfer approach to solve the continuity, momentum, and energy equations. The study considers steady, laminar, and Newtonian flow conditions and evaluates system performance under varying heat flux levels. Key parameters include Reynolds number (50–200), nanoparticle volume fraction (1 %–15 %), latent heat of melting (240–260 J/g), and ambient temperatures in Sukkur, Pakistan. Results indicate that paraffin wax undergoes phase transitions more rapidly than sodium sulfate decahydrate, whereas Na2SO4·10H2O exhibits greater temperature variations due to higher inlet temperatures. Optimal thermal efficiency of 75.91 % is achieved at Re = 50, Tamb = 45 °C, and = 10 %.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.