{"title":"A novel concentrating solar plant configuration with multiple solar fields and thermal energy storage to reduce energy production costs","authors":"Irfan Shaikh, Anish Modi","doi":"10.1016/j.csite.2025.106185","DOIUrl":null,"url":null,"abstract":"<div><div>We propose and evaluate the use of a two-tank direct thermal energy storage system with a multi-field concentrating solar power plant. The plant includes parabolic trough collector and linear Fresnel reflector solar fields to generate electricity using a steam Rankine power cycle. Prior literature has assessed the performance of a multi-field configuration, but without thermal energy storage. Integrating thermal energy storage within the plant presents the potential to increase the plant's capacity factor while reducing the levelized cost of electricity (LCOE). A techno-economic analysis is performed considering the design and the off-design characteristics of the proposed configuration. A parametric analysis is also performed to minimize the levelized cost of electricity for the location of Jodhpur, India. The study reveals that there exists a minimum LCOE corresponding to each combination of the parabolic trough collector aperture area and hours of storage. Among all the combinations, the minimum LCOE is 0.283 $ kWh<sup>-1</sup>, corresponding to 34372 m<sup>2</sup> of parabolic trough aperture area and 12 h of storage, which is 20 % less than that for a multi-field concentrating solar power plant without storage. The plant capacity factor is also increased to 70 %, thereby resulting in better dispatchability.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106185"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004459","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose and evaluate the use of a two-tank direct thermal energy storage system with a multi-field concentrating solar power plant. The plant includes parabolic trough collector and linear Fresnel reflector solar fields to generate electricity using a steam Rankine power cycle. Prior literature has assessed the performance of a multi-field configuration, but without thermal energy storage. Integrating thermal energy storage within the plant presents the potential to increase the plant's capacity factor while reducing the levelized cost of electricity (LCOE). A techno-economic analysis is performed considering the design and the off-design characteristics of the proposed configuration. A parametric analysis is also performed to minimize the levelized cost of electricity for the location of Jodhpur, India. The study reveals that there exists a minimum LCOE corresponding to each combination of the parabolic trough collector aperture area and hours of storage. Among all the combinations, the minimum LCOE is 0.283 $ kWh-1, corresponding to 34372 m2 of parabolic trough aperture area and 12 h of storage, which is 20 % less than that for a multi-field concentrating solar power plant without storage. The plant capacity factor is also increased to 70 %, thereby resulting in better dispatchability.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.