Jie Shi , Chuan He , Li Chen , Xixin Xing , Wenyi Wei , Jinfang Zhang
{"title":"Targeting PD-1 post-translational modifications for improving cancer immunotherapy","authors":"Jie Shi , Chuan He , Li Chen , Xixin Xing , Wenyi Wei , Jinfang Zhang","doi":"10.1016/j.cellin.2025.100248","DOIUrl":null,"url":null,"abstract":"<div><div>Programmed cell death protein 1 (PD-1) is a critical immune checkpoint receptor that suppresses immune responses largely through its interaction with PD-L1. Tumors exploit this mechanism to evade immune surveillance, positioning immune checkpoint inhibitors targeting the PD-1/PD-L1 axis as groundbreaking advancements in cancer therapy. However, the overall effectiveness of these therapies is often constrained by an incomplete understanding of the underlying mechanisms. Recent research has uncovered the pivotal role of various post-translational modifications (PTMs) of PD-1, including ubiquitination, UFMylation, phosphorylation, palmitoylation, and glycosylation, in regulating its protein stability, localization, and protein-protein interactions. As much, dysregulation of these PTMs can drive PD-1-mediated immune evasion and contribute to therapeutic resistance. Notably, targeting PD-1 PTMs with small-molecule inhibitors or monoclonal antibodies (MAbs) has shown potential to bolster anti-tumor immunity in both pre-clinical mouse models and clinical trials. This review highlights recent findings on PD-1's PTMs and explores emerging therapeutic strategies aimed at modulating these modifications. By integrating these mechanistic insights, the development of combination cancer immunotherapies can be further rationally advanced, offering new avenues for more effective and durable treatments.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"4 3","pages":"Article 100248"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell insight","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772892725000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Programmed cell death protein 1 (PD-1) is a critical immune checkpoint receptor that suppresses immune responses largely through its interaction with PD-L1. Tumors exploit this mechanism to evade immune surveillance, positioning immune checkpoint inhibitors targeting the PD-1/PD-L1 axis as groundbreaking advancements in cancer therapy. However, the overall effectiveness of these therapies is often constrained by an incomplete understanding of the underlying mechanisms. Recent research has uncovered the pivotal role of various post-translational modifications (PTMs) of PD-1, including ubiquitination, UFMylation, phosphorylation, palmitoylation, and glycosylation, in regulating its protein stability, localization, and protein-protein interactions. As much, dysregulation of these PTMs can drive PD-1-mediated immune evasion and contribute to therapeutic resistance. Notably, targeting PD-1 PTMs with small-molecule inhibitors or monoclonal antibodies (MAbs) has shown potential to bolster anti-tumor immunity in both pre-clinical mouse models and clinical trials. This review highlights recent findings on PD-1's PTMs and explores emerging therapeutic strategies aimed at modulating these modifications. By integrating these mechanistic insights, the development of combination cancer immunotherapies can be further rationally advanced, offering new avenues for more effective and durable treatments.