M.F. Huq , V.V. Srinivasaragavan , O. Sahni , D. Curreli
{"title":"A block-structured nonuniform meshing technique for reducing the degrees-of-freedom in hybrid particle-in-cell plasma simulations","authors":"M.F. Huq , V.V. Srinivasaragavan , O. Sahni , D. Curreli","doi":"10.1016/j.cpc.2025.109612","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we discuss a block-structured nonuniform meshing technique for multi-scale plasma simulations of plasma sheaths and scrape-off layers, suitable to implementation in hybrid Particle-in-Cell (PIC) schemes that consider kinetic ions and Boltzmann electrons. The meshing scheme is designed to support large-scale fusion plasma domains (spanning tens of meters) with a substantially reduced number of degrees-of-freedom (DOF) compared to simulations employing a uniform mesh. We show that the solution derived at low DOFs maintains the same level of accuracy as solutions obtained from highly refined uniform meshes, still maintaining particle noise under control. The meshing scheme can be equally applied to both 1D and 2D plasma domains. This reduction in DOFs leads to a significant reduction in computational cost while keeping total count of computational particles the same for corresponding cases, making it a valuable tool for cost-effective, multi-scale fusion plasma simulations.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"313 ","pages":"Article 109612"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001146","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we discuss a block-structured nonuniform meshing technique for multi-scale plasma simulations of plasma sheaths and scrape-off layers, suitable to implementation in hybrid Particle-in-Cell (PIC) schemes that consider kinetic ions and Boltzmann electrons. The meshing scheme is designed to support large-scale fusion plasma domains (spanning tens of meters) with a substantially reduced number of degrees-of-freedom (DOF) compared to simulations employing a uniform mesh. We show that the solution derived at low DOFs maintains the same level of accuracy as solutions obtained from highly refined uniform meshes, still maintaining particle noise under control. The meshing scheme can be equally applied to both 1D and 2D plasma domains. This reduction in DOFs leads to a significant reduction in computational cost while keeping total count of computational particles the same for corresponding cases, making it a valuable tool for cost-effective, multi-scale fusion plasma simulations.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.