{"title":"Mechanical and electrical properties of a polymer electrolyte based on zinc oxide for enhancement of Li-ion battery performance","authors":"Peng Zhang","doi":"10.1016/j.polymertesting.2025.108821","DOIUrl":null,"url":null,"abstract":"<div><div>This work was carried out to synthesize and apply mesoporous 3-mercaptopropyl pyridine-ZnO nanorods (MPP-ZnO NRs) as additives in a cross-linked composite gel polymer electrolyte for enhancing the performance of lithium-ion batteries. The MPP-ZnO NRs were synthesized using a sol-gel method and functionalized with MPP. The electrospun fibrous polyacrylonitrile (PAN) membrane was coated with ZnO nanorods, forming a stable and robust composite electrolyte. Results of mechanical tests indicated that compared to control membranes (without ZnO NRs), the MPP-ZnO-containing membranes showed significant enhancements, likely an increase in tensile strength (∼1.5-fold), an enhancement in adhesion strength (∼4-fold), and an increase in shear stress (∼3-fold). Electrochemical performance was evaluated using charge-discharge cycling and AC impedance spectroscopy tests. Findings demonstrated that utilizing cross-linked gel-polymer electrolytes with MPP-ZnO NRs showed lower charge transfer resistance and superior cycling stability, maintaining 89.0 % capacity retention after 200 cycles at 0.5C, with an initial discharge capacity of 179.9 mAh/g and 160.1 mAh/g after 200 cycles. Moreover, these cells showed remarkable capacity recovery, with an18 % higher capacity at 5.0C compared to non-porous counterparts and delivering discharge capacity of 139.8 mAh/g at 5.0C. Results showed good high-rate performance due to improved thermal stability and HF scavenging ability of the mesoporous MPP-ZnO NR-based electrolyte. These results indicate the potential of mesoporous MPP-ZnO NRs in advancing the performance and stability of lithium-ion batteries, making them as low-cost candidates for future energy storage applications.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"147 ","pages":"Article 108821"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825001357","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This work was carried out to synthesize and apply mesoporous 3-mercaptopropyl pyridine-ZnO nanorods (MPP-ZnO NRs) as additives in a cross-linked composite gel polymer electrolyte for enhancing the performance of lithium-ion batteries. The MPP-ZnO NRs were synthesized using a sol-gel method and functionalized with MPP. The electrospun fibrous polyacrylonitrile (PAN) membrane was coated with ZnO nanorods, forming a stable and robust composite electrolyte. Results of mechanical tests indicated that compared to control membranes (without ZnO NRs), the MPP-ZnO-containing membranes showed significant enhancements, likely an increase in tensile strength (∼1.5-fold), an enhancement in adhesion strength (∼4-fold), and an increase in shear stress (∼3-fold). Electrochemical performance was evaluated using charge-discharge cycling and AC impedance spectroscopy tests. Findings demonstrated that utilizing cross-linked gel-polymer electrolytes with MPP-ZnO NRs showed lower charge transfer resistance and superior cycling stability, maintaining 89.0 % capacity retention after 200 cycles at 0.5C, with an initial discharge capacity of 179.9 mAh/g and 160.1 mAh/g after 200 cycles. Moreover, these cells showed remarkable capacity recovery, with an18 % higher capacity at 5.0C compared to non-porous counterparts and delivering discharge capacity of 139.8 mAh/g at 5.0C. Results showed good high-rate performance due to improved thermal stability and HF scavenging ability of the mesoporous MPP-ZnO NR-based electrolyte. These results indicate the potential of mesoporous MPP-ZnO NRs in advancing the performance and stability of lithium-ion batteries, making them as low-cost candidates for future energy storage applications.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.