PENGEOM – A general-purpose geometry package for Monte Carlo simulation of radiation transport in complex material structures (New Version Announcement)

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Julio Almansa , Francesc Salvat-Pujol , Gloria Díaz-Londoño , Artur Carnicer , Antonio M. Lallena , Francesc Salvat
{"title":"PENGEOM – A general-purpose geometry package for Monte Carlo simulation of radiation transport in complex material structures (New Version Announcement)","authors":"Julio Almansa ,&nbsp;Francesc Salvat-Pujol ,&nbsp;Gloria Díaz-Londoño ,&nbsp;Artur Carnicer ,&nbsp;Antonio M. Lallena ,&nbsp;Francesc Salvat","doi":"10.1016/j.cpc.2025.109634","DOIUrl":null,"url":null,"abstract":"<div><div>A new version of the code system <span>pengeom</span>, which provides a complete set of tools to handle different geometries in Monte Carlo simulations of radiation transport, is presented. The distribution package consists of a set of Fortran subroutines and a Java graphical user interface that allows building and debugging the geometry-definition file, and producing images of the geometry in two- and three dimensions. A detailed description of these tools is given in the original paper [<em>Comput. Phys. Commun.</em> <strong>199</strong> (2016) 102–113] and in the code manual included in the distribution package. The present new version differs from the previous one in that 1) it implements a more systematic handling of round-off errors, 2) the set of examples has been updated, and 3) it allows including a single voxelized box as a geometry module. With the last optional feature, a Monte Carlo code can readily be used for describing irradiation processes with complex material structures, such as medical treatments.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"313 ","pages":"Article 109634"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001365","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A new version of the code system pengeom, which provides a complete set of tools to handle different geometries in Monte Carlo simulations of radiation transport, is presented. The distribution package consists of a set of Fortran subroutines and a Java graphical user interface that allows building and debugging the geometry-definition file, and producing images of the geometry in two- and three dimensions. A detailed description of these tools is given in the original paper [Comput. Phys. Commun. 199 (2016) 102–113] and in the code manual included in the distribution package. The present new version differs from the previous one in that 1) it implements a more systematic handling of round-off errors, 2) the set of examples has been updated, and 3) it allows including a single voxelized box as a geometry module. With the last optional feature, a Monte Carlo code can readily be used for describing irradiation processes with complex material structures, such as medical treatments.
PENGEOM -用于复杂材料结构中辐射输运蒙特卡罗模拟的通用几何包(新版本公告)
本文介绍了pengeom编码系统的一个新版本,它提供了一套完整的工具来处理蒙特卡罗辐射输运模拟中的不同几何形状。该发行包由一组Fortran子例程和一个Java图形用户界面组成,该界面允许构建和调试几何定义文件,并生成二维和三维的几何图像。这些工具的详细描述在原始论文[Comput]中给出。理论物理。common . 199(2016) 102-113]和发行包中包含的代码手册。当前的新版本与之前的版本不同,1)它实现了更系统的舍入错误处理,2)更新了示例集,3)它允许包含单个体素化框作为几何模块。有了最后一个可选特性,蒙特卡罗代码可以很容易地用于描述具有复杂材料结构的辐照过程,例如医疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信