{"title":"Grover's search meets Ising models: A quantum algorithm for finding low-energy states","authors":"A.A. Zhukov , A.V. Lebedev , W.V. Pogosov","doi":"10.1016/j.cpc.2025.109627","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a methodology for implementing Grover's algorithm in the digital quantum simulation of disordered Ising models. The core concept revolves around using the evolution operator for the Ising model as the quantum oracle within Grover's search. This operator induces phase shifts for the eigenstates of the Ising Hamiltonian, with the most pronounced shifts occurring for the lowest and highest energy states. Determining these states for a disordered Ising Hamiltonian using classical methods presents an exponentially complex challenge with respect to the number of spins (or qubits) involved. Within our proposed approach, we determine the optimal evolution time by ensuring a phase flip for the target states. This method yields a quadratic speedup compared to classical computation methods and enables the identification of the lowest and highest energy states (or neighboring states) with a high probability ≲1.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"313 ","pages":"Article 109627"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001298","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a methodology for implementing Grover's algorithm in the digital quantum simulation of disordered Ising models. The core concept revolves around using the evolution operator for the Ising model as the quantum oracle within Grover's search. This operator induces phase shifts for the eigenstates of the Ising Hamiltonian, with the most pronounced shifts occurring for the lowest and highest energy states. Determining these states for a disordered Ising Hamiltonian using classical methods presents an exponentially complex challenge with respect to the number of spins (or qubits) involved. Within our proposed approach, we determine the optimal evolution time by ensuring a phase flip for the target states. This method yields a quadratic speedup compared to classical computation methods and enables the identification of the lowest and highest energy states (or neighboring states) with a high probability ≲1.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.