EMF-GAN:Efficient Multilayer Fusion GAN for text-to-image synthesis

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Wenli Chen , Huihuang Zhao
{"title":"EMF-GAN:Efficient Multilayer Fusion GAN for text-to-image synthesis","authors":"Wenli Chen ,&nbsp;Huihuang Zhao","doi":"10.1016/j.cag.2025.104219","DOIUrl":null,"url":null,"abstract":"<div><div>Text-to-image generation is a challenging and significant research task. It aims to synthesize high-quality images that match the given descriptive statements. Existing methods still have problems in generating semantic information fusion insufficiently, and the generated images cannot represent the descriptive statements properly. Therefore, A novel method named EMF-GAN (Efficient Multilayer Fusion Generative Adversarial Network) is proposed. It uses a Multilayer Fusion Module (MF Module) and Efficient Multi-Scale Attention Module (EMA Module) to fuse the semantic information into the feature maps gradually. It realizes the full utilization of the semantic information and obtains high-quality realistic images. Extensive experimental results show that our EMF-GAN is highly competitive in image generation quality and semantic consistency. Compared with the state-of-the-art methods, EMF-GAN shows significant performance improvement on both CUB (FID from 14.81 to 10.74) and COCO (FID from 19.32 to 16.86) datasets. It can generate photorealistic images with richer details and text-image consistency. Code can be found at <span><span>https://github.com/zxcnmmmmm/EMF-GAN-master</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"128 ","pages":"Article 104219"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325000603","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Text-to-image generation is a challenging and significant research task. It aims to synthesize high-quality images that match the given descriptive statements. Existing methods still have problems in generating semantic information fusion insufficiently, and the generated images cannot represent the descriptive statements properly. Therefore, A novel method named EMF-GAN (Efficient Multilayer Fusion Generative Adversarial Network) is proposed. It uses a Multilayer Fusion Module (MF Module) and Efficient Multi-Scale Attention Module (EMA Module) to fuse the semantic information into the feature maps gradually. It realizes the full utilization of the semantic information and obtains high-quality realistic images. Extensive experimental results show that our EMF-GAN is highly competitive in image generation quality and semantic consistency. Compared with the state-of-the-art methods, EMF-GAN shows significant performance improvement on both CUB (FID from 14.81 to 10.74) and COCO (FID from 19.32 to 16.86) datasets. It can generate photorealistic images with richer details and text-image consistency. Code can be found at https://github.com/zxcnmmmmm/EMF-GAN-master.

Abstract Image

EMF-GAN:文本到图像合成的高效多层融合GAN
文本到图像的生成是一个具有挑战性和重要意义的研究课题。它的目标是合成符合给定描述语句的高质量图像。现有方法在生成语义信息融合方面存在不足,生成的图像不能很好地表示描述性语句。为此,提出了一种新的方法——高效多层融合生成对抗网络(EMF-GAN)。该算法采用多层融合模块(MF模块)和高效多尺度注意模块(EMA模块)将语义信息逐步融合到特征图中。实现了语义信息的充分利用,获得了高质量的逼真图像。大量的实验结果表明,我们的EMF-GAN在图像生成质量和语义一致性方面具有很强的竞争力。与最先进的方法相比,EMF-GAN在CUB (FID从14.81到10.74)和COCO (FID从19.32到16.86)数据集上的性能都有显著提高。它可以生成具有更丰富细节和文本图像一致性的逼真图像。代码可以在https://github.com/zxcnmmmmm/EMF-GAN-master上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信