Improving subseasonal forecasting of East Asian monsoon precipitation with deep learning

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Jiahui Zhou , Fei Liu
{"title":"Improving subseasonal forecasting of East Asian monsoon precipitation with deep learning","authors":"Jiahui Zhou ,&nbsp;Fei Liu","doi":"10.1016/j.aosl.2024.100520","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate subseasonal forecasting of East Asian summer monsoon (EASM) precipitation is crucial, as it directly impacts the livelihoods of billions. However, the prediction skill of state-of-the-art subseasonal-to-seasonal (S2S) models for precipitation remains limited. In this study, the authors developed a convolutional neural network (CNN) regression model to enhance the prediction skill for weekly EASM precipitation by utilizing the more reliably predicted circulation fields from dynamic models. The outcomes of the CNN model are promising, as it led to a 14 % increase in the anomaly correlation coefficient (ACC), from 0.30 to 0.35, and a 22 % reduction in the root-mean-square error (RMSE), from 3.22 to 2.52, for predicting the weekly EASM precipitation index at a leading time of one week. Among the S2S models, the improvement in prediction skill through CNN correction depends on the model's performance in accurately predicting circulation fields. The CNN correction of EASM precipitation index can only rectify the systematic errors of the model and is independent of whether the each grid point or the entire area-averaged index is corrected. Furthermore, u200 (200-hPa zonal wind) is identified as the most important variable for efficient correction.</div><div>摘要</div><div>东亚夏季风(EASM)降水的准确次季节预报至关重要, 因为它直接影响着数十亿人的生计. 然而, 最先进的次季节-季节(S2S)预测模型的预测技巧仍然有限. 本研究开发了一种卷积神经网络(CNN)回归模型, 通过利用动力预测模型预测的更可靠的环流场来提高EASM周降水的预测技巧. 经过CNN模型的订正, 在提前一周预测EASM降水指数时, 11个S2S模式的平均距平相关系数从增加了14 %, 从0.30增加到0.35; 均方根误差减少了22 %, 从3.22减少到2.52. 在这些S2S模式中, 通过CNN订正对预测技巧的提高程度取决于模式在准确预测大气环流变量方面的表现. 对EASM降水指数的CNN订正只能订正模式的系统误差, 与逐个网格订正还是整个区域平均指数订正无关, 并且在不同的提前期内CNN的订正效果基本不变. 此外, 200hPa纬向风被认为是有效订正的最重要变量.</div></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"18 3","pages":"Article 100520"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283424000692","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate subseasonal forecasting of East Asian summer monsoon (EASM) precipitation is crucial, as it directly impacts the livelihoods of billions. However, the prediction skill of state-of-the-art subseasonal-to-seasonal (S2S) models for precipitation remains limited. In this study, the authors developed a convolutional neural network (CNN) regression model to enhance the prediction skill for weekly EASM precipitation by utilizing the more reliably predicted circulation fields from dynamic models. The outcomes of the CNN model are promising, as it led to a 14 % increase in the anomaly correlation coefficient (ACC), from 0.30 to 0.35, and a 22 % reduction in the root-mean-square error (RMSE), from 3.22 to 2.52, for predicting the weekly EASM precipitation index at a leading time of one week. Among the S2S models, the improvement in prediction skill through CNN correction depends on the model's performance in accurately predicting circulation fields. The CNN correction of EASM precipitation index can only rectify the systematic errors of the model and is independent of whether the each grid point or the entire area-averaged index is corrected. Furthermore, u200 (200-hPa zonal wind) is identified as the most important variable for efficient correction.
摘要
东亚夏季风(EASM)降水的准确次季节预报至关重要, 因为它直接影响着数十亿人的生计. 然而, 最先进的次季节-季节(S2S)预测模型的预测技巧仍然有限. 本研究开发了一种卷积神经网络(CNN)回归模型, 通过利用动力预测模型预测的更可靠的环流场来提高EASM周降水的预测技巧. 经过CNN模型的订正, 在提前一周预测EASM降水指数时, 11个S2S模式的平均距平相关系数从增加了14 %, 从0.30增加到0.35; 均方根误差减少了22 %, 从3.22减少到2.52. 在这些S2S模式中, 通过CNN订正对预测技巧的提高程度取决于模式在准确预测大气环流变量方面的表现. 对EASM降水指数的CNN订正只能订正模式的系统误差, 与逐个网格订正还是整个区域平均指数订正无关, 并且在不同的提前期内CNN的订正效果基本不变. 此外, 200hPa纬向风被认为是有效订正的最重要变量.
利用深度学习改进东亚季风降水分季节预报
东亚夏季风(EASM)降水的准确分季节预报至关重要,因为它直接影响数十亿人的生计。然而,目前最先进的亚季节-季节(S2S)模式对降水的预测能力仍然有限。本文通过建立卷积神经网络(convolutional neural network, CNN)回归模型,利用较可靠的动态模式预报环流场,提高对EASM周降水的预报能力。CNN模型的预测结果是有希望的,因为它导致异常相关系数(ACC)增加14%,从0.30到0.35,均方根误差(RMSE)减少22%,从3.22到2.52,在一周的领先时间预测EASM周降水指数。在S2S模型中,通过CNN校正预测技能的提高取决于模型在准确预测环流场方面的表现。CNN对EASM降水指数的校正只能对模型的系统误差进行校正,与是对每个格点还是对整个面积平均指数进行校正无关。此外,u200 (200 hpa纬向风)被确定为有效校正的最重要变量。笨笨,笨笨,笨笨,笨笨,笨笨,笨笨,笨笨,笨笨。本研究开发了一种卷积神经网络(CNN)回归模型,通过利用动力预测模型预测的更可靠的环流场来提高EASM周降水的预测技巧。经过CNN模型的订正,在提前一周预测EASM降水指数时,11个s2模式的平均距平相关系数从增加了14%,从0.30增加到0.35;★★★★★★★★★★★★★★★★★在这些s2模式中,通过CNN订正对预测技巧的提高程度取决于模式在准确预测大气环流变量方面的表现。对EASM降水指数的CNN订正只能订正模式的系统误差,与逐个网格订正还是整个区域平均指数订正无关,并且在不同的提前期内CNN的订正效果基本不变。笨笨,笨笨,笨笨
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信