Xiangshao Kong , Zihan Zhu , Cheng Zheng , Hu Zhou , Weiguo Wu
{"title":"Numerical investigation on the dynamic behavior of thermoplastic fiber-metal laminates subject to confined explosion loading","authors":"Xiangshao Kong , Zihan Zhu , Cheng Zheng , Hu Zhou , Weiguo Wu","doi":"10.1016/j.tws.2025.113354","DOIUrl":null,"url":null,"abstract":"<div><div>A numerical simulation study was conducted to investigate the dynamic response and failure behavior of thermoplastic fiber-metal laminates (TFMLs) under confined explosion conditions. To simulate the response of TFMLs to high-impact loads, a subroutine was developed incorporating the strain rate effect. In addition, a surrogate model for predicting the dynamic response of TFMLs was established by employing parametric modeling combined with Gaussian process regression analysis. Bayesian optimization of the thickness ratios for each layer group of the laminates was performed, using lightweight and protective performance as the comprehensive evaluation indices. The results indicate that incorporating the strain rate effect facilitates reliable characterization of both overall deformation and internal damage of TFMLs. The deviation of peak deflection between the numerically calculated value and experimental results is approximately 3 %, while the error for residual deflection is <10 %. A comparative analysis shows that the strain rate effect has significant influence both on the overall deformation and internal fiber damage of the blast loaded TFMLs. Furthermore, optimizing the thickness of each stack achieved an 11.9 % reduction in areal density and a 1.6 % reduction in residual deflection compared to those of the original design scheme. Increasing the metal thickness ratios on the front and rear faces of the laminated structure was shown to significantly enhance its protective performance. This research will contribute to advancing methodologies for analyzing the dynamic response and optimizing the structural design of TFMLs.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"214 ","pages":"Article 113354"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125004471","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A numerical simulation study was conducted to investigate the dynamic response and failure behavior of thermoplastic fiber-metal laminates (TFMLs) under confined explosion conditions. To simulate the response of TFMLs to high-impact loads, a subroutine was developed incorporating the strain rate effect. In addition, a surrogate model for predicting the dynamic response of TFMLs was established by employing parametric modeling combined with Gaussian process regression analysis. Bayesian optimization of the thickness ratios for each layer group of the laminates was performed, using lightweight and protective performance as the comprehensive evaluation indices. The results indicate that incorporating the strain rate effect facilitates reliable characterization of both overall deformation and internal damage of TFMLs. The deviation of peak deflection between the numerically calculated value and experimental results is approximately 3 %, while the error for residual deflection is <10 %. A comparative analysis shows that the strain rate effect has significant influence both on the overall deformation and internal fiber damage of the blast loaded TFMLs. Furthermore, optimizing the thickness of each stack achieved an 11.9 % reduction in areal density and a 1.6 % reduction in residual deflection compared to those of the original design scheme. Increasing the metal thickness ratios on the front and rear faces of the laminated structure was shown to significantly enhance its protective performance. This research will contribute to advancing methodologies for analyzing the dynamic response and optimizing the structural design of TFMLs.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.