Superconvergence and extrapolation of a second-order θ fully discrete scheme with nonconforming FEM for degenerate nonlocal thermistor problems

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Conggang Liang , Xiangyu Shi , Dongyang Shi
{"title":"Superconvergence and extrapolation of a second-order θ fully discrete scheme with nonconforming FEM for degenerate nonlocal thermistor problems","authors":"Conggang Liang ,&nbsp;Xiangyu Shi ,&nbsp;Dongyang Shi","doi":"10.1016/j.cnsns.2025.108861","DOIUrl":null,"url":null,"abstract":"<div><div>The main purpose of this paper is to study the superconvergence and extrapolation of nonconforming finite element method (FEM) for the degenerate nonlocal thermistor problem. Firstly, a new second-order <span><math><mi>θ</mi></math></span> fully discrete scheme is proposed with the nonconforming quasi-Wilson element on quadrilateral meshes. Notably, the scheme is reduced to the 2-step backward differential formula (BDF2) scheme if <span><math><mrow><mi>θ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, and is simplified as the Crank–Nicolson (CN) scheme when <span><math><mrow><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. Secondly, the superclose and global superconvergence estimates with <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> are derived in the broken <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm. Subsequently, the extrapolation result with <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the broken <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm is deduced on rectangular meshes by the higher order consistency error estimate of the quasi-Wilson element and the asymptotic expansion result of the bilinear element. Here <span><math><mi>h</mi></math></span> is the subdivision parameter and <span><math><mi>τ</mi></math></span> is the time step. Finally, some numerical experiments are performed to test the validity of the theoretical analysis.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"148 ","pages":"Article 108861"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425002722","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this paper is to study the superconvergence and extrapolation of nonconforming finite element method (FEM) for the degenerate nonlocal thermistor problem. Firstly, a new second-order θ fully discrete scheme is proposed with the nonconforming quasi-Wilson element on quadrilateral meshes. Notably, the scheme is reduced to the 2-step backward differential formula (BDF2) scheme if θ=0, and is simplified as the Crank–Nicolson (CN) scheme when θ=12. Secondly, the superclose and global superconvergence estimates with O(h2+τ2) are derived in the broken H1-norm. Subsequently, the extrapolation result with O(h3+τ2) in the broken H1-norm is deduced on rectangular meshes by the higher order consistency error estimate of the quasi-Wilson element and the asymptotic expansion result of the bilinear element. Here h is the subdivision parameter and τ is the time step. Finally, some numerical experiments are performed to test the validity of the theoretical analysis.
退化非局部热敏电阻问题二阶θ完全离散非协调有限元格式的超收敛和外推
本文的主要目的是研究退化非局部热敏电阻问题的非协调有限元法的超收敛性和外推性。首先,在四边形网格上提出了一种新的二阶θ完全离散格式,该格式具有非协调拟wilson单元。值得注意的是,当θ=0时,该格式被简化为2步倒推微分公式(BDF2)格式,当θ=12时,该格式被简化为Crank-Nicolson (CN)格式。其次,在h1 -范数破碎的情况下,导出了O(h2+τ2)的超逼近估计和全局超收敛估计。随后,利用准wilson元的高阶一致性误差估计和双线性元的渐近展开结果,在矩形网格上推导出了在破碎h1范数中O(h3+τ2)的外推结果。这里h是细分参数,τ是时间步长。最后,通过数值实验验证了理论分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信